• 제목/요약/키워드: Internal Implant

검색결과 223건 처리시간 0.026초

임플랜트-지대주의 내측연결 시스템에서 하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소 응력분석 (Finite Element Stress Analysis of Implant Prosthesis of Internal Connection System According to Position and Direction of Load)

  • 장종석;정용태;정재헌
    • 구강회복응용과학지
    • /
    • 제21권1호
    • /
    • pp.1-14
    • /
    • 2005
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis of internal connection system(ITI system) according to position and direction of load, under vertical and inclined loading using finite element analysis (FEA). The finite element model of a synOcta implant and a solid abutment with $8^{\circ}$ internal conical joint used by the ITI implant was constructed. The gold crown for mandibular first molar was made on solid abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric cusp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant under both vertical and oblique loading but stresses in the cancellous bone were low under both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. So, the relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 4. In this internal conical joint, vertical and oblique loads were resisted mainly by the implant-abutment joint at the screw level and by the implant collar. Conclusively, It seems to be more important that how long the distance is from center of rotation of the implant itself to the resultant line of force from occlusal contact (leverage). In a morse taper implant, vertical and oblique loads are resisted mainly by the implant-abutment joint at the screw level and by the implant collar. This type of implant-abutment connection can also distribute forces deeper within the implant and shield the retention screw from excessive loading. Lateral forces are transmitted directly to the walls of the implant and the implant abutment mating bevels, providing greater resistance to interface opening.

임플란트 주위 조직 보존을 위한 임플란트 경부의 디자인에 관한 고찰 (Considerations in implant crestal module to preserve peri-implant tissue)

  • 김홍준;김지환;김성태;이재훈;박영범
    • 대한치과보철학회지
    • /
    • 제49권4호
    • /
    • pp.346-353
    • /
    • 2011
  • 연구 목적: 임플란트 식립 후 변연골 흡수에 따라 임플란트 주위 연조직이 재구성되며, 이에 따라 치료의 예후 및 심미성 등에 영향을 주게 된다. 그러므로 임플란트 경부 주위 골조직 보존을 위한 임플란트 경부에 다양한 디자인이 연구되고 있다. 본 고찰의 목적은 초기 변연골 흡수의 원인과 이에 따른 임플란트 주위의 연조직 변화에 대해 고찰하고, 어떠한 임플란트 경부 디자인이 임플란트 주위 조직의 보존에 유리한 지 알아보고자 한다. 연구 재료 및 방법: Pubmed database에서 임플란트 초기 변연골 흡수의 원인과 관련된 논문과 임플란트 경부의 여러 디자인에 관한 논문을 검색하여 분석하였다. 임플란트 경부 디자인은 one piece implant, two piece implant, internal hex abutment, external hex abutment, taper joint connection, butt joint connection, scalloped design abutment, platform switching concept에 관해 검토하였다. 결과: 초기의 임플란트 주위 조직 보존에 대하여 one piece implant가 two piece implant보다 유리한 것으로 여러 임상적, 실험적 연구가 있다. Two piece implant에서는 internal hex abutment가 external hex abutment보다, taper joint connection가 butt joint connection보다 유리할 것으로 보여진다. Scalloped design abutment에 대해서는 논쟁의 여지가 있어 더 많은 연구가 필요할 것으로 판단된다. Platform switching concept은 그 원인이 명확히 밝혀지지는 않았으나 임상적, 실험적으로 초기 임플란트 주위 조직 보존에 대해 유리한 것으로 판단된다. 결론: 임플란트 경부의 디자인마다 각각의 장단점이 있고 추가적인 연구가 더 필요한 제한이 있지만 현재까지의 선행 연구들을 분석 종합해 보면 초기 임플란트 주위 조직 보존을 고려한다면 가능한 경우 one piece implant가 유리할 것으로 판단되며, 보철적인 문제나 다른 이유로 인하여 two piece implant를 고려할 경우 platform switching concept, internal connection abutment, taper joint connection을 이용하는 것이 임플란트 주위 조직 보존에 좀더 유리할 것으로 사료된다.

지대주 각도와 연결방식이 지르코니아 지대주의 파절강도에 미치는 영향 (Effects of abutment angulation and type of connection on the fracture strength of zirconia abutments)

  • 김호성;조혜원
    • 대한치과보철학회지
    • /
    • 제55권1호
    • /
    • pp.9-17
    • /
    • 2017
  • 목적: 내부 연결형과 외부 연결형의 임플란트에서 직선형과 경사형 지르코니아 지대주의 파절강도를 비교하였다. 재료 및 방법: 내부육각 연결형 임플란트 20개와 외부육각 연결형 임플란트 20개에, 기성 직선형 지르코니아 지대주와, $17^{\circ}$ 경사형 지르코니아 지대주를 10개씩 체결하였다. 시편은 연결 방식과 지대주 각도에 따라 4개의 군으로 나누었다: 내부 연결형/ 직선형 지대주, INS군; 내부 연결형/ 경사형 지대주, INA 군; 외부 연결형/ 직선형 지대주, EXS 군; 외부 연결형/ 경사형 지대주, EXA 군. 모든 시편은 만능시험기에서 1 mm/min의 crosshead speed로 $30^{\circ}$ 하중을 가했다. 지대주의 파절강도를 측정하고, 2-way ANOVA와 independent t-test로 통계처리 하였다(${\alpha}=.05$). 결과: 각 군의 평균파절강도는 다음과 같다: INS군, 955.91 N; INA군, 933.65 N; EXS군, 1267.20 N; EXA군, 1405.93 N. 외부 연결형이 내부 연결형에 비해 파절강도가 높았다(P < .001). 내부연결형(P = .747)과 외부 연결형(P = .222)에서 지대주 각도에 따른 파절강도는 차이가 없었다. 또한 내부 연결형 지대주는 육각 부위에서 수평 파절이 일어난 반면, 외부 연결형 지대주는 설측 치경부에서 파절되었다. 결론: 외부 연결형 지르코니아 지대주가 내부 연결형 지대주에 비해 파절 강도가 높았고, 직선형과 경사형 지르코니아 지대주의 파절강도는 차이가 없었다.

EFFECT OF CASTING PROCEDURE ON SCREW LOOSENING OF UCLA ABUTMENT IN TWO IMPLANT-ABUTMENT CONNECTION SYSTEMS

  • Ha, Chun-Yeo;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo
    • 대한치과보철학회지
    • /
    • 제46권3호
    • /
    • pp.246-254
    • /
    • 2008
  • STATEMENT OF PROBLEM: The cast abutment has advantages of overcoming angulation problem and esthetic problem. However, when a gold-machined UCLA abutment undergoes casting, the abutment surfaces in contact with the implant may change. PURPOSE: The purpose of this study was to compare the detorque values of prefabricated machined abutments with gold-premachined cast-on UCLA abutments before and after casting in two types of internal implant-abutment connection systems: (1) internal hexagonal joint, (2) internal octagonal joint. Furthermore, the detorque values of two implant-abutment connection systems were compared. MATERIALS AND METHODS: Twenty internal hexagonal implants with an 11-degree taper and twenty internal octagonal implants with an 8-degree taper were acquired. Ten prefabricated titanium abutments and ten gold-premachined UCLA abutments were used for each systems. Each abutment was torqued to 30 N㎝ according to the manufacturer's instructions and detorque value was recorded. The detorque values were measured once more, after casting with gold alloy for UCLA abutment, and preparation for titanium abutments. Group means were calculated and compared using independent t-test and paired t-test (${\alpha}$=0.05). RESULTS: The results were as follows: 1. The detorque values between titanium abutments and UCLA-type abutments showed significant differences in internal octagonal implants (P<0.05), not in internal hexagonal implants (P>0.05). 2. In comparison of internal hexagonal and octagonal implants, the detorque values of titanium abutments had significant differences between two connection systems on the initial analysis (P<0.05), not on the second analysis (P>0.05) and the detorque values of UCLA-type abutments were not significantly different between two connection systems (P>0.05). 3. The detorque values of titanium abutments and UCLA-type abutments decreased significantly on the second analysis than the initial analysis in internal hexagonal implants (P<0.05), not in internal octagonal implants (P>0.05). CONCLUSION: Casting procedures of UCLA-type abutments had no significant effect on screw loosening in internal implant-abutment connection systems, and UCLA-type abutments showed higher detorque values than titanium abutments in internal octagonal implants.

Comparison of implant component fractures in external and internal type: A 12-year retrospective study

  • Yi, Yuseung;Koak, Jai-Young;Kim, Seong-Kyun;Lee, Shin-Jae;Heo, Seong-Joo
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권2호
    • /
    • pp.155-162
    • /
    • 2018
  • PURPOSE. The aim of this study was to compare the fracture of implant component behavior of external and internal type of implants to suggest directions for successful implant treatment. MATERIALS AND METHODS. Data were collected from the clinical records of all patients who received WARANTEC implants at Seoul National University Dental Hospital from February 2002 to January 2014 for 12 years. Total number of implants was 1,289 and an average of 3.2 implants was installed per patient. Information about abutment connection type, implant locations, platform sizes was collected with presence of implant component fractures and their managements. SPSS statistics software (version 24.0, IBM) was used for the statistical analysis. RESULTS. Overall fracture was significantly more frequent in internal type. The most frequently fractured component was abutment in internal type implants, and screw fracture occurred most frequently in external type. Analyzing by fractured components, screw fracture was the most frequent in the maxillary anterior region and the most abutment fracture occurred in the maxillary posterior region and screw fractures occurred more frequently in NP (narrow platform) and abutment fractures occurred more frequently in RP (regular platform). CONCLUSION. In external type, screw fracture occurred most frequently, especially in the maxillary anterior region, and in internal type, abutment fracture occurred frequently in the posterior region. placement of an external type implant rather than an internal type is recommended for the posterior region where abutment fractures frequently occur.

Comparison of fit accuracy and torque maintenance of zirconia and titanium abutments for internal tri-channel and external-hex implant connections

  • Siadat, Hakimeh;Beyabanaki, Elaheh;Mousavi, Niloufar;Alikhasi, Marzieh
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권4호
    • /
    • pp.271-277
    • /
    • 2017
  • PURPOSE. This in vitro study aimed to evaluate the effect of implant connection design (external vs. internal) on the fit discrepancy and torque loss of zirconia and titanium abutments. MATERIALS AND METHODS. Two regular platform dental implants, one with external connection ($Br{\aa}nemark$, Nobel Biocare AB) and the other with internal connection (Noble Replace, Nobel Biocare AB), were selected. Seven titanium and seven customized zirconia abutments were used for each connection design. Measurements of geometry, marginal discrepancy, and rotational freedom were done using video measuring machine. To measure the torque loss, each abutment was torqued to 35 Ncm and then opened by means of a digital torque wrench. Data were analyzed with two-way ANOVA and t-test at ${\alpha}=0.05$ of significance. RESULTS. There were significant differences in the geometrical measurements and rotational freedom between abutments of two connection groups (P<.001). Also, the results showed significant differences between titanium abutments of internal and external connection implants in terms of rotational freedom (P<.001). Not only customized internal abutments but also customized external abutments did not have the exact geometry of prefabricated abutments (P<.001). However, neither connection type (P=.15) nor abutment material (P=.38) affected torque loss. CONCLUSION. Abutments with internal connection showed less rotational freedom. However, better marginal fit was observed in externally connected abutments. Also, customized abutments with either connection could not duplicate the exact geometry of their corresponding prefabricated abutment. However, neither abutment connection nor material affected torque loss values.

Long-term effect of implant-abutment connection type on marginal bone loss and survival of dental implants

  • Young-Min Kim;Jong-Bin Lee;Heung-Sik Um;Beom-Seok Chang;Jae-Kwan Lee
    • Journal of Periodontal and Implant Science
    • /
    • 제52권6호
    • /
    • pp.496-508
    • /
    • 2022
  • Purpose: This study aimed to compare the long-term survival rate and peri-implant marginal bone loss between different types of dental implant-abutment connections. Methods: Implants with external or internal abutment connections, which were fitted at Gangneung-Wonju National University Dental Hospital from November 2011 to December 2015 and followed up for >5 years, were retrospectively investigated. Cumulative survival rates were evaluated for >5 years, and peri-implant marginal bone loss was evaluated at 1- and 5-year follow-up examinations after functional loading. Results: The 8-year cumulative survival rates were 93.3% and 90.7% in the external and internal connection types, respectively (P=0.353). The mean values of marginal bone loss were 1.23 mm (external) and 0.72 mm (internal) (P<0.001) after 1 year of loading, and 1.20 mm and 1.00 mm for external and internal abutment connections, respectively (P=0.137) after 5 years. Implant length (longer, P=0.018), smoking status (heavy, P=0.001), and prosthetic type (bridge, P=0.004) were associated with significantly greater marginal bone loss, and the use of screw-cement-retained prosthesis was significantly associated (P=0.027) with less marginal bone loss. Conclusions: There was no significant difference in the cumulative survival rate between implants with external and internal abutment connections. After 1 year of loading, marginal bone loss was greater around the implants with an external abutment connection. However, no significant difference between the external and internal connection groups was found after 5 years. Both types of abutment connections are viable treatment options for the reconstruction of partially edentulous ridges.

수종의 임플랜트 시스템의 나사풀림에 관한 연구 (Screw Loosening of Various Implant Systems)

  • 안진수;조인호;임주환;임헌송
    • 구강회복응용과학지
    • /
    • 제18권2호
    • /
    • pp.81-91
    • /
    • 2002
  • Dental implant systems have shown many post-surgical problems and One of the most frequent problem is screw loosening. To reduce screw loosening, a number of methods have been tried and recently fundamental modification of fixture-abutment connection structure was developed and used the most frequently. Former implant system structure, such as Br${\aa}$nemark, had external hex with the height of 0.7 mm and later, fixture with external hex of 1.0 mm height and internal hex structure were developed. In addition, the method of morse taper application was introduced to reduce screw loosening. In this study, the level of screw loosening of each implant systems was compared based on the vibration loosening measurement of abutment screw of each implant systems. Analysis of measured value was performed using 3 kinds of methods, (i) Percentage of average of initial 3 times loosening-torque value(initial loosening value) to tightening-torque of 30 Ncm, (ii) Percentage of loosening-torque value after 200 N strength loaded(experimental value) to initial loosening value and (iii) Percentage of experimental value to 30 Ncm of tightening-torque. Each result of analyses shows the value of initial loosening, loosening by repetitive load and final loosening level. The results of this study were as follows. (1) Percentage of initial loosening value to tightening-torque was increased in order of 0.7 mm external hex, 1.0 mm external hex, internal hex and internal taper and all values between each groups showed statistical significance (p<0.05). (2) Percentage of experimental value to initial loosening value was increased in order of internal hex, 0.7 mm external hex, 1.0 mm external hex and internal taper. Value of internal taper showed significant difference with that of 0.7 mm external hex and internal hex (p<0.05). (3) Percentage of experimental value to tightening torque was increased in order of 0.7 mm external hex, 1.0 mm external hex, internal hex and internal taper. Values of all groups showed statistical significance (p<0.05) except between the groups of 1.0 mm external hex and internal hex. Based on those results, there was no significant difference of loosening-torque by repetitive loading except internal taper. It is supposed that implant system with high resistant capability against initial loosening could be recommended for clinical use. In addition, in case of single implant restoration, 1.0 mm external hex or internal hex could be recommended rather than 0.7 mm external hex, and the use of internal taper would be the most useful way to reduce screw loosening.

Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems

  • Jo, Jae-Young;Yang, Dong-Seok;Huh, Jung-Bo;Heo, Jae-Chan;Yun, Mi-Jung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권6호
    • /
    • pp.491-497
    • /
    • 2014
  • PURPOSE. This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS. Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. RESULTS. Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). CONCLUSION. The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material.

임플랜트와 지대주 간 내측연결 시스템에서 Friction Fit와 Slip Fit에 따른 유한요소 응력분석 (Finite Element Stress Analysis of Implant Prosthesis According to Friction Fit or Slip Fit of Internal Connection System between Implant and Abutment)

  • 장두익;정승미;정재헌
    • 구강회복응용과학지
    • /
    • 제21권2호
    • /
    • pp.113-132
    • /
    • 2005
  • The purpose of this study was to assess the stress-induced pattern at the supporting bone, the implant fixture, the abutment and the abutment screw according to a friction-fit joint (Astra; Model 1) or slip- fit joint (Frialit-2; Model 2) in the internal connection system under vertical and inclined loading using finite element analysis. In conclusion, in the internal connection system of the implant and the abutment connection methods, the stress-induced pattern at the supporting bone, the implant fixture, the abutment and the abutment screw according to the abutment connection form had difference among them, and the stress distribution pattern usually had a widely distributed tendency along the inner surface of the implant fixture contacting the abutment post. The magnitude of the stress distributed in the supporting bone, the implant fixture, the abutment and the abutment screw was higher in the friction-fit joint than in the slip-fit joint. But it is considered that the further study is necessary about how this difference in the magnitude of the stress have an effect on the practical clinic.