• Title/Summary/Keyword: Internal Design Factor

Search Result 314, Processing Time 0.037 seconds

Correlation of internal and external pressures and net pressure factors for cladding design

  • Bodhinayake, Geeth G.;Ginger, John D.;Henderson, David J.
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.219-229
    • /
    • 2020
  • Net pressures on roofs and walls of buildings are dependent on the internal and external pressure fluctuations. The variation of internal and external pressures are influenced by the size and location of the openings. The correlation of external and internal pressure influences the net pressures acting on cladding on different parts of the roof and walls. The peak internal and peak external pressures do not occur simultaneously, therefore, a reduction can be applied to the peak internal and external pressures to obtain a peak net pressure for cladding design. A 1:200 scale wind tunnel model study was conducted to determine the correlations of external and internal pressures and effective reduction to net pressures (i.e., net pressure factors, FC) for roof and wall cladding. The results show that external and internal pressures on the windward roof and wall edges are well correlated. The largest ${\mathcal{C}}_{{\check{p},net}$, highest correlation coefficient and the highest FC are obtained for different wind directions within 90° ≤ θ ≤ 135°, where the large openings are on the windward wall. The study also gives net pressure factors FC for areas on the roof and wall cladding for nominally sealed buildings and the buildings with a large windward wall opening. These factors indicate that a 5% to 10% reduction to the action combination factor, KC specified in AS/NZS 1170.2(2011) is possible for some critical design scenarios.

Frozen Layer Effect on Internal Cavity Pressure during Injection Molding (사출성형 공정에서 고화층이 캐비티 압력에 미치는 영향)

  • Lee H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.474-479
    • /
    • 2005
  • Experimental and theoretical studies of internal cavity pressure during injection molding of a spiral tube cavity were carried out. The frozen layer thickness and the evolution of internal cavity pressure were calculated using a commercial software (C-MOLD). The evolution of the internal cavity pressure was recorded during injection molding of polystyrene into a spiral tube mold. To explain the differences observed between the calculated and measured internal cavity pressure, a pressure correction factor (PCF) was introduced based on the plane stress theory. This factor was determined by analyzing the stress state in the melt and calculating the frozen layer thickness near the mold wall. The corrected and experimental pressures have been compared to validate the applicability of the pressure correction factor.

  • PDF

Effect of the Design Parameter for Internal Spline Forming Using the Tube (중공축 내접 스플라인 성형을 위한 설계변수의 영향)

  • Wang, C.B.;Lim, S.J.;Park, Y.B.
    • Transactions of Materials Processing
    • /
    • v.15 no.7 s.88
    • /
    • pp.512-517
    • /
    • 2006
  • In this paper, the cold extrusion process for internal spline forming using a thin and long tube has been analyzed by using a rigid plastic finite element code. The internal spline consists of 10 tooths. The cold extrusion process has been focused on the comparisions of load-stroke relation and filling states of the teeth according to design parameters. The design parameters involve extrusion ratio, extrusion angle and friction factor. The internal spline forming can cause the buckling and folding during the cold extrusion process because of using a thin and long tube. The optimum design parameters have been obtained through rigid-plastic finite elements analysis. The extrusion ratio and extrusion angle have great effects on the deformation characteristics of the cold extrusion process.

Collaboration Scripts for Argumentation Based on Activity Theory

  • KIM, Hyosook;KWON, Sungho;KIM, Dongsik
    • Educational Technology International
    • /
    • v.13 no.1
    • /
    • pp.145-173
    • /
    • 2012
  • The purpose of this study is to develop collaboration scripts as an instructional means to facilitate argumentation in computer-supported collaborative learning, and to analyze their effects. To develop collaboration scripts for argumentation, researchers used activity theory as a conceptual framework and refined the design principles by design-based research. Using LAMS, collaboration scripts for argumentation were developed based on the ArgueGraph. To examine their effects, 72 participants were divided into two groups by internal scripts and randomly allocated to one of three external scripts. Applying mixed methods, researchers analyzed argumentation competence related to the cognitive aspect, examined self-efficacy related to the motivational aspect, and identified the factors influencing collaborative learning processes and outcomes. Researchers found that the internal script is a critical factor to determine the dimensions, degrees, and duration of improvement in argumentation competence. That is, learners with higher internal scripts improved highly in the quality of single arguments, while learners with lower internal scripts improved continuously in the quality of argumentation sequences. The effects of the external scripts varied with the internal script levels and supporting periods. Besides, collaboration scripts for argumentation had positive effects on learners' self-efficacy, and learners with higher internal scripts had better self-efficacy. The factors influencing collaborative learning processes and outcomes showed different results depending on the learning context. Therefore, when scripting learner's interaction in CSCL, researchers should design the scripts adaptable to a natural context of activities.

Shear Strength Incorporated with Internal Force State Factor in RC Slender Beams (내력상태계수 도입을 통한 RC보의 전단강도분석)

  • 정제평;김희정;김우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.912-917
    • /
    • 2003
  • In this paper a new truss modeling technique for describing the beam shear resistance mechanism is proposed based on the reinterpretation of the well-known relationship between shear and the rate of change of bending moment in a reinforced concrete beam subjected to combined shear and moment loads. The core of the model is that a new perspective on the shear resistance can be gained by viewing the internal stress filed in terms of the superposition of two base components of shear resistance; arch action and beam action. The arch action can be described as a simple tied-arch which is consisted of a curved compression chord and a tension tie of the longitudinal steel, while the beam action between the two chords can be modeled as a membrane shearing element with forming a smeared truss action. The compatibility of deformation associated to the two action is taken into account by employing an experimental factor or internal state force factor a. Then the base equation of V=dM/dx is numerically duplicated. The new model was examined by the 362 experimental results. The shear strength predicted by the internal force state factor a show better correlation with the tested values than the present shear design.

  • PDF

A Study of Limit State Design Method in Soil Slope (토사면의 한계상태 설계법에 관한 연구)

  • Joung, Gi-Hun;Kim, Jong-Min;Jang, Bum-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.129-136
    • /
    • 2005
  • The deterministic analysis method has generally used to evaluate the slope stability and it evaluates the slope stability with decision value that is a representative value of design variables. However, one of disadvantages in the deterministic approach is there is not able to consider the uncertainty of soil strength properties, even though it is the biggest influential parameter of the slope stability. On the other hand, the limit state design(LSD) can take a consideration of uncertainties and computes both the reliability index and the probability of failure. LSD method is capable of overcoming the disadvantages of deterministic method and evaluating the slope stability more reliably. In this study, both the mean value and standard deviation of the internal land's representative soil strength properties applied to process the LSD method. The major purpose of this study is to gauge the general applicability of the limit state design in soil slope and to weigh the comparative validity of the proposed partial safety factor. In order to reach the aim of this study, the partial safety factor and resistance factor which totally satisfied the slope's overall safety factor were calculated by the load and resistance safety factor design (LRFD).

  • PDF

SCFs in offshore two-planar tubular TT-joints reinforced with internal ring stiffeners

  • Ahmadi, Hamid;Imani, Hossein
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • The majority of tubular joints commonly found in offshore jacket structures are multi-planar. Investigating the effect of loaded out-of-plane braces on the values of the stress concentration factor (SCF) in offshore tubular joints has been the objective of numerous research works. However, due to the diversity of joint types and loading conditions, a number of quite important cases still exist that have not been studied thoroughly. Among them are internally ring-stiffened two-planar TT-joints subjected to axial loading. In the present research, data extracted from the stress analysis of 243 finite element (FE) models, verified against available numerical and experimental data, was used to study the effects of geometrical parameters on the chord-side SCFs in two-planar tubular TT-joints reinforced with internal ring stiffeners subjected to two types of axial loading. Parametric FE study was followed by a set of nonlinear regression analyses to develop six new SCF parametric equations for the fatigue analysis and design of axially-loaded two-planar TT-joints reinforced with internal ring stiffeners.

Factor analysis of subgrade spring stiffness of circular tunnel

  • Xiangyu Guo;Liangjie Wang;Jun Wang;Junji An
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.229-237
    • /
    • 2024
  • This paper studied the subgrade spring stiffness and its influencing factors in the seismic deformation method of circular tunnel. Numerical calculations are performed for 3 influencing factors: stratum stiffness, tunnel diameter and burial depth. The results show that the stratum stiffness and tunnel diameter have great influence on the subgrade spring stiffness. The subgrade spring stiffness increases linearly with stratum stiffness increasement, and decreases with the tunnel diameter increasement. When the burial depth ratio (burial depth/tunnel diameter) exceeds to 5, the subgrade spring stiffness has little sensitivity to the burial depth. Then, a proposed formula of subgrade spring stiffness for the seismic deformation method of circular tunnel is proposed. Meanwhile, the internal force results of the seismic deformation method are larger than that of the dynamic time history method, but the internal force distributions of the two methods are consistent, that is, the structure exhibits elliptical deformation with the largest internal force at the conjugate 45° position of the circular tunnel. Therefore, the seismic deformation method based on the proposed formula can effectively reflect the deformation and internal force characteristics of the tunnel and has good applicability in engineering practice.

A Study on the Utilization of Illustration for the Identity Design in Fashion Brand (패션 브랜드의 아이덴티티 디자인을 위한 일러스트레이션의 활용 방안 연구)

  • Beak, Jeong Hyun;Kan, Moon Ja
    • Journal of the Korean Society of Costume
    • /
    • v.65 no.5
    • /
    • pp.88-102
    • /
    • 2015
  • The purpose of this study is to investigate the examples of using illustration as a strategic factor of composing brand cultures and as a factor for brand identity design. Through analyzing the external characteristics and the internal characteristics of illustration, this study will give suggestions on ways to apply the examples to real design. Illustration in external characteristics is investigated as a case of applying it directly to fashion design and to fashion marketing. Most of the fashion items were printed or weaved and most of the bags, shoes, and accessories were printed on the cover, attached as a patch, and expressed three-dimensionally. Illustration in internal characteristics is investigated as fixing and expansion of brand image, improving artistic and emotional value of brand, vitalization of masstige items, and cultural support and expression of social responsibility. The three themes used to develop the illustrations of "Hello ZIBI", which was used in this study, were "Graphic", "Forest" and "Flower", and these were based on modified brand symbol. Casual brands grafted fashion item designs onto T-shirts, bags, hats, and scarves. Marketing items were designed as shopping bags that could reflect brand image, as well as other items, such as key holders, mug cups, and tumblers, with designs that targeted specific age groups.

A Process for Replacing BIM Property Information about Internal Finishing of Office Building in Design Phase (업무시설 설계단계 BIM 내부마감 속성정보 교체 프로세스)

  • Han, Ji-Ho;Nam, Dong-Hee;Park, Sang-Hun;Koo, Kyo-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.207-208
    • /
    • 2023
  • The procedure of predicting the construction cost and selecting the best alternative is performed based on comparative review of each building case. In the case of office building, it is required continuously until design is complete, since the owner requirements are various and likely to change during the design process compared to a standardized apartment. However, since the comparison work for each alternative in practice uses only the unit construction cost, there is no correlation between the alternative and the final result, and it is difficult to quantitatively determine the effect of the determined design factor on the total construction cost. It is needed that a means to support the generation of design alternatives using similar building cases during the design phase. This paper proposes a BIM-based data replacing process to support creating and comparison of design alternatives of internal finishing for office building. When design alternatives are created through the proposed process, it is possible to compare several similar cases with current project under equivalent design circumstance. Because only some finishing properties are replaced while maintaining the shape information such as the length, height, and base constraint of the object to be replaced.

  • PDF