• Title/Summary/Keyword: Intermolecular

Search Result 457, Processing Time 0.02 seconds

Effect of Variation in the Molecular Structure on the Miscibility of Modified Polystyrene/Polymethacrylate Blends (Modified Polystyrene/Polymethacrylate 블렌드의 상용성에 대한 분자구조 변화의 영향)

  • Koo, Chung-Wan;Kim, Hyung-Il;Kim, Byeong Cheol
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.743-747
    • /
    • 1999
  • The component polymer was modified to enable the formation of intermolecular hydrogen bonding in the immiscibile polystyrene(PS)/polymethacrylate(PMA) blends. The mole percentages of hydroxystyrene of the poly(styrene-co-4-hydroxystyrene) copolymer(modified polystyrene, MPS) were controlled to 7%, 10% and 18%, respectively. MPS was used with PMA to study the variation of the miscibility in blends. PMA which had such different length of side chain as methyl, butyl, hexyl and ethylhexyl, respectively, was selected to study the effect of side chain length on the formation of intermolecular hydrogen bonding. As the hydroxyl content of MPS increased, the formation of intermolecular hydrogen bonding increased. The length of side chain of PMA had enormous effect on the miscibility of blend as confirmed from the result of cloud point measurement. As the length of side chain increased, the formation and the strength of intermolecular hydrogen bonding decreased severely due to the steric effect and the increased chain mobility.

  • PDF

Effect of intermolecular interactions between CNTs and silane binders on the opto-electrical properties of SWNT/silane binder films (탄소나노튜브와 바인더의 상호작용이 탄소나노튜브/바인더 박막의 정전기적 특성에 미치는 영향)

  • Han, Joong-Tark;Kim, Sun-Young;Jeong, Hee-Jin;Jeong, Seung-Yol;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.97-98
    • /
    • 2009
  • Here, we describe a versatile strategy for precise control of the optoelectrical properties of the single walled carbon nanotube (SWNT)/silane binder hybrid films by noncovalent hybridization. Stable SWNT/silane binder solutions were prepared by direct mixing of high concentration CNT solutions and silane sol solutions. The critical binder content was determined by varying the amount of binder in the SWNT/binder solutions. A binder content of 50 wt% was used to prepare the other SWNT/binder solutions. This study demonstrates how the intermolecular interactions between the SWNTs and the silanes can affect the conductivity of the CNT/binder network films by characterizing the optoelectrical and Raman spectroscopic properties of the SWNT/silane films containing silane binders with various functional groups. The use of the PTMS binder with phenyl groups was found to be most effective in the fabrication of transparent and conductive films on glass substrates. Such a precise control of the optoelectrical properties of SWNT/binder films can be useful to fabricate the high performance conductive thin films, with ramifications for understanding the fundamental intermolecular interaction in carbon materials science.

  • PDF

Correlation between an Intermolecular Potential and the State of a Nanoscale System (분자간 포텐셜과 나노계 상태와의 상관관계)

  • Choi, Soon-Ho;Chung, Han-Shik;Jeong, Hyo-Min;Lim, Min-Jong;Choi, Gyung-Min;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.496-501
    • /
    • 2007
  • Recently, as MEMS and NEMS devices have been widely used in the various engineering applications, the characteristics of nanoscale systems are investigated in the limelight. However, as opposed to a macroscale system, the identification of the state of nanoscale systems is extremely hard because they can include only the order of $10^{3}\sim10^{5}$ molecules, which requires highly expensive and accurate experimental apparatus for an investigation. This limitations make the study on nanoscale system use computer simulations. Therefore, it is strongly required to identify the state of nanoscale system simulated in computer simulation. In these molecular dynamics(MD) study, we suggest that the potential energy of individual molecule can be used as criterion for defining the state of clusters or nanoscale systems. In addition, we compared the phase state from the potential energy with one from the radial distribution function(RDF) for verification. The comparison showed that the intermolecular potential energy can be used as a criteria distinguishing the phase state of nanoscale systems (This study will be published soon in the KSME transaction of the section B).

  • PDF

Novel Suspension-Phase Enzyme Reaction System Using Insoluble Extrusion Starch as Glycosyl Donor for Intermolecular Transglycosylation of L-Ascorbic Acid

  • Kim, Tae-Kwon;Jung, Se-Wook;Go, Young-Hoon;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1678-1683
    • /
    • 2006
  • A novel suspension-phase enzyme reaction system for the intermolecular transglycosylation of L-ascorbic acid into 2-O-${\alpha}$-D-glucopyranosyl L-ascorbic acid supplementing extrusion starch as the glycosyl donor was developed using cyclodextrin glucanotransferase from Thermoanaerobacter sp. A high conversion yield compared to the conventional soluble-phase enzyme reaction system using cyclodextrins and soluble starch was achieved. The optimal reaction conditions were 2,000 units of cycIodextrin glucanotransferase, 20 g/l of L-ascorbic acid, and 50 g/l of extrusion starch at $50^{\circ}C$ for 24 h. The new suspension-phase enzyme reaction system also exhibited several distinct advantages other than a high conversion yield, including a lower accumulation of oligosaccharides and easily separable residual extrusion starch by centrifugation or filtration in the reaction mixture, which will facilitate the purification of 2-O-${\alpha}$-D-glucopyranosyl L-ascorbic acid. The new suspension-phase enzyme reaction system seems to be potentially applicable as the industrial process for the production of thermally and oxidatively stable 2-O-${\alpha}$-D-glucopyranosyl L-ascorbic acid.

FGM micro-gripper under electrostatic and intermolecular Van-der Waals forces using modified couple stress theory

  • Jahangiri, Reza;Jahangiri, Hadi;Khezerloo, Hamed
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1541-1555
    • /
    • 2015
  • In this paper mechanical behavior of the functional gradient materials (FGM) micro-gripper under thermal load and DC voltage is numerically investigated taking into account the effect of intermolecular forces. In contrary to the similar previous works, which have been conducted for homogenous material, here, the FGM material has been implemented. It is assumed that the FGM micro-gripper is made of metal and ceramic and that material properties are changed continuously along the beam thickness according to a given function. The nonlinear governing equations of the static and dynamic deflection of microbeams have been derived using the coupled stress theory. The equations have been solved using the Galerkin based step-by-step linearization method (SSLM). The solution procedure has been evaluated against available data of literature showing good agreement. A parametric study has been conducted, focusing on the combined effects of important parameters included DC voltage, temperature variation, geometrical dimensions and ceramic volume concentration on the dynamic response and stability of the FGM micro-gripper.

Vibrational Analysis and Intermolecular Hydrogen Bonding of Azodicarbonamide in the Pentamer Cluster

  • Lee, Choong-Keun;Park, Sun-Kyung;Min, Kyung-Chul;Kim, Yun-Soo;Lee, Nam-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1951-1959
    • /
    • 2008
  • Pentamer cluster of azodicarbonamide (ADA) based on the crystalline structure was investigated for the equilibrium structure, the stabilization energies, and the vibrational properties at various levels of the density functional theory. Stretching force constants of N${\cdot}{\cdot}{\cdot}$H or O${\cdot}{\cdot}{\cdot}$H, and angle-bending force constants of N-H${\cdot}{\cdot}{\cdot}$N or N-H${\cdot}{\cdot}{\cdot}$O for intermolecular hydrogen bonds in the pentamer cluster were obtained in 0.2-0.5 mdyn/$\AA$ and 1.6-2.0 mdyn$\AA$, respectively. The geometry of central ADA molecule fully hydrogen bonded with other four molecules shows good coincidence to the crystalline structure except the bond distances of N-H. Calculated Raman and infrared spectra of central ADA molecule in cluster represent well the experimental spectra of ADA obtained in the solid state compared to a single molecule. Detailed structural and vibrational properties of central ADA molecule in the pentamer cluster are presented.

A Study on the Preparation and Dielectric Characteristic of $\beta$-PVDF Vapor Deposited Thin Films by Applied Electric Field Method (전계인가법을 이용한 $\beta$-PVDF 증착 박막의 제조와 유전특성에 관한 연구)

  • 박수홍;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.221-228
    • /
    • 1998
  • In this study, the $\beta$-Polyvinylidene fluoride(PVDF) thin films were fabricated by physical vapor deposition method. Also, the properties of dielectric relaxation were studied to understand carrier's behavior of PVDF thin films, to be regarded as the excellent piezo and pyroelectricity. In the process of vapor deposition, the $\beta$-PVDF thin films have been fabricated under the condition of the substrate temperature at 3$0^{\circ}C$, the applied electric field at 142.8kV/cm and the pressure at 2.0${\times}10^{-5}$torr. The dielectric properties of PVDF have been studied in the frequency range 10Hz to 1MHz at temperature from 30 to $100^{\circ}C$. The relative dielectric constant of $\alpha$ and $\beta$-PVDF were 6.8 and 9.8, respectively, under a frequency of 1kHz. Such a phenomenon was caused by the decrease in intermolecular forces originated by the phase-transition from the TGTG' molecular conformation to the TT planar zig-zag conformation. And the relative dielectric constant is increased as a measuring temperature increases, because of the reduction of relaxation time caused by the decrease of intermolecular force.

  • PDF

How Do Liquid Crystal Molecules Align on Treated Surfaces?

  • Okada, Yoshinori;Shioda, Tatsutoshi;Chung, Doo-Han;Park, Byoung-Choo;Takezoe, Hideo
    • Journal of Information Display
    • /
    • v.4 no.2
    • /
    • pp.29-34
    • /
    • 2003
  • We have studied liquid crystal (LC) molecular alignment on rubbed and photoaligned surfaces. Particular attention was paid to the intermolecular liquid crystalline interaction. We will first show that uniform molecular orientation on a rubbed surface does not mean spatially uniform interaction between the surface and LC molecules. Rather LCs tend to align themselves through LC interaction. The existence of nonuniformity of rubbing was successfully visualized by double surface treatment. The importance of intermolecular LC interaction was also found in the orientation formation process in 5CB evaporated on rubbed and photoaligned surfaces. By simultaneously analyzing polarized UVNIS absorption and second-harmonic generation (SHG) using the maximum entropy method, we succeeded in obtaining the temporal variation of the orientational distribution functions in the film forming process. The distribution anisotropy and pretilt are found to be generated under the influence of intermolecular LC interaction.

Mechanism of Metal Ion Binding to Chitosan in Solution. Cooperative Inter- and Intramolecular Chelations

  • Joon Woo Park;Myung Ok Park;Kwanghee Koh Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.3
    • /
    • pp.108-112
    • /
    • 1984
  • Interactions between metal ions and chitosan in solution were studied by spectroscopic and viscometric measurements. $Cu^{++}$-chitosan complex exhibited an absorption band at 265 nm, whereas D-glucosamine complex showed one at 245 nm. The difference in ${\lambda}_{max}$ was attributed to the different amine to $Cu^{2+}$ ratios of the complexes, that is, 2 : 1 for chitosan and 1 : 1 for D-glucosamine. The molar absorptivities and binding constants of the complexes were evaluatatled. The binding of $Cu^{2+}$ to chitosan was cooperative near pH 5, and both intra- and intermolecular chelations depending on chitosan and $Cu^{2+}$concentrations were observed, The intermolecular chelation was stabilized by addition of salts. The cooperative intermolecular chelation of $Ni^{++}$ was also observed at pH 6.2. No significant binding of other divalent ions was observed. The reported high adsorption abilities of chitosan particles for these ions were attributed to the deposition of metal hydroxide aggregates in pores of chitosan particles rather than chelation to amine groups.

Encapsulation Characteristics of Gas Molecules in the Cavities of Zeolite A

  • Jin Hyun Kwon;Kee Heon Cho;Hae Won Kim;Soong Hyuck Suh;Nam Ho Heo
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.583-588
    • /
    • 1993
  • Encapsulation capacities $(V_{gas})$ of, $H_2,\;N_2,\;CO,\;CH_4$ and CO, for $Cs_{2.5}Na_{9.5}-A (C_s-A)$ and $Na_{12}$-A (Na-A) zeolites have been measured in order to understand the effect of molecular properties on the $V_{gas}$. With appropriate number of large blocking cations on the main windows of cavities in zeolite A, gas molecules can be encapsulated in both the ${\alpha}$ -and ${\beta}$-cages, resulting in much large $V_{gas}.\;V_{gas}$ is proportional to the encapsulation pressure (Pe) and is also dependent on the molecular properties of encapsulated gases themselves, especially on intermolecular forces originated from the quadrupole moments of molecules in the molecular-dimensioned cavities of zeolite A. At the low range of Pe, molecules with larger $V_{gas}$ and intermolecular forces apparently have smaller increasing tendencies of $V_{gas}$ upon increases in Pe, showing a linear relationship between the tendencies and intermolecular forces rather than their sizes. Interactions between encapsulated molecules of $CH_4$ and framework of Cs-A have been estimated and they seem to depend on the number of encapsulated molecules per unit cell. On the basis of calculated density of $CO_2$, presence of liquid-like phase for the encapsulated molecules in the molecular dimensioned cavities of zeolite A is postulated.