DOI QR코드

DOI QR Code

Encapsulation Characteristics of Gas Molecules in the Cavities of Zeolite A

  • Jin Hyun Kwon (Department of Industrial Chemistry, Kyungpook National University) ;
  • Kee Heon Cho (Department of Industrial Chemistry, Kyungpook National University) ;
  • Hae Won Kim (Department of Industrial Chemistry, Kyungpook Sanup University) ;
  • Soong Hyuck Suh (Department of Chemical Engineering, Keimyung University) ;
  • Nam Ho Heo (Department of Industrial Chemistry, Kyungpook National University)
  • Published : 1993.10.20

Abstract

Encapsulation capacities $(V_{gas})$ of, $H_2,\;N_2,\;CO,\;CH_4$ and CO, for $Cs_{2.5}Na_{9.5}-A (C_s-A)$ and $Na_{12}$-A (Na-A) zeolites have been measured in order to understand the effect of molecular properties on the $V_{gas}$. With appropriate number of large blocking cations on the main windows of cavities in zeolite A, gas molecules can be encapsulated in both the ${\alpha}$ -and ${\beta}$-cages, resulting in much large $V_{gas}.\;V_{gas}$ is proportional to the encapsulation pressure (Pe) and is also dependent on the molecular properties of encapsulated gases themselves, especially on intermolecular forces originated from the quadrupole moments of molecules in the molecular-dimensioned cavities of zeolite A. At the low range of Pe, molecules with larger $V_{gas}$ and intermolecular forces apparently have smaller increasing tendencies of $V_{gas}$ upon increases in Pe, showing a linear relationship between the tendencies and intermolecular forces rather than their sizes. Interactions between encapsulated molecules of $CH_4$ and framework of Cs-A have been estimated and they seem to depend on the number of encapsulated molecules per unit cell. On the basis of calculated density of $CO_2$, presence of liquid-like phase for the encapsulated molecules in the molecular dimensioned cavities of zeolite A is postulated.

Keywords

References

  1. Zeolite Molecular Sieves: Structure, Chemistry, and Use D. W. Breck
  2. J. Phys. Chem. Solids v.32 R. M. Barrer;D. E. W. Vaughan
  3. Chem. Tech. v.1 D. Fraenkel
  4. Tans, Faraday Soc. v.67 R. M. Barrer;D. E. W. Vaughan
  5. Innovation in Zeolite Materials Science E. F. Vansant;P. J. Grobet(et al.)(Eds.)
  6. Surface Science v.14 R. M. Barrer;D. E. W. Vaughan
  7. ME Thesis, Kyungpook National University J. H. Kwon
  8. J. Phys. Chem. v.92 M. G. Samant;L-C de Menorval;R. A. D. Betta;M. Boudart
  9. J. Phys. Chem. v.96 P. Santikary;S. Yashonath;G. Ananthakrishna
  10. Trans. Faraday Soc. v.50 R. M. Barrer;L. V. C. Rees
  11. Zeolite Molecular Sieves: Structure, Chemistry, and Use D. W. Breck
  12. J. Chem. Soc., Far. Trans. I v.74 R. M. Barrer;E. F. Vansant;G. Peeters
  13. J. Chem. Soc., Far. Trans. I v.82 A. Thijs;G. Peeters;E. F. Vansant;I. Verhaert
  14. J. Chem. Soc., Far. Trans. I v.80 M. Niwa;S. Kato;T. Hattori;Y. Marakami
  15. J. Chem. Edu. v.41 D. W. Breck
  16. Argon, Helium and the Rare Gases v.1 G. A. Cook
  17. U. S. Patent, 3316691 W. J. Sesny;L. H. Shaffer
  18. Alternative Energy Sources D. Fraenkel;R. Lazar;J. Shabtai
  19. Zeolite Molecular Sieves: Structure, Chemistry, and Use D. W. Breck
  20. J. Am Chem. Soc. v.99 D. Fraenkel;J. Shabtai
  21. J. Chem. Soc., Faraday Trans. 1 v.77 D. Fraenkel
  22. J. Chem. Soc., Chem. Commun. D. Fraenkel;B. Ittah;M. Levy
  23. J. Chem. Soc., Chem. Commun. D. Fraenkel;B. Ittah;M. Levy
  24. J. Phys. Chem. v.96 N. H. Heo;J. H. Yoon
  25. Hwahak Konghak v.29 no.4 N. H. Heo;R. B. Rho;D. H. Kim;J. T. Kim
  26. Hwahak Konghak v.29 no.6 N. H. Heo;D. H. Kim;J. T. Kim
  27. N. H. Heo;K. H. Cho;J. H. Kwon
  28. J. Am. Chem. Soc. v.109 N. H. Heo;K. Seff
  29. J. Phys. Chem. v.81 V. Subramanian;K. Seff
  30. J. Chem. Soc., Faraday Trans. I v.77 D. Fraenkel
  31. Zeolite Molecular Sieves: Structure, Chemistry, and Use D. W. Breck
  32. Handbook of Chemistry and Physics Chemical Rubber Co.
  33. Can, J. Chem. v.47 R. J. Happer;G. R. Stifeld;R. B. Anderson
  34. Physical Chemistry G. W. Castellan
  35. Handbook of Chemistry and Physics Chemical Rubber Co.
  36. N. H. Heo;J. H. Kwon;K. H. Cho

Cited by

  1. Investigation of the possibility of low pressure encapsulation of carbon dioxide in potassium chabazite (KCHA) and sodium chabazite (NaCHA) zeolites vol.337, pp.2, 1993, https://doi.org/10.1016/j.jcis.2009.05.058