Browse > Article
http://dx.doi.org/10.12989/scs.2015.18.6.1541

FGM micro-gripper under electrostatic and intermolecular Van-der Waals forces using modified couple stress theory  

Jahangiri, Reza (Department of Mechanical Engineering, Salmas Branch, Islamic Azad University)
Jahangiri, Hadi (Department of Mechanical Engineering, Salmas Branch, Islamic Azad University)
Khezerloo, Hamed (Department of Civil Engineering, Salmas Branch, Islamic Azad University)
Publication Information
Steel and Composite Structures / v.18, no.6, 2015 , pp. 1541-1555 More about this Journal
Abstract
In this paper mechanical behavior of the functional gradient materials (FGM) micro-gripper under thermal load and DC voltage is numerically investigated taking into account the effect of intermolecular forces. In contrary to the similar previous works, which have been conducted for homogenous material, here, the FGM material has been implemented. It is assumed that the FGM micro-gripper is made of metal and ceramic and that material properties are changed continuously along the beam thickness according to a given function. The nonlinear governing equations of the static and dynamic deflection of microbeams have been derived using the coupled stress theory. The equations have been solved using the Galerkin based step-by-step linearization method (SSLM). The solution procedure has been evaluated against available data of literature showing good agreement. A parametric study has been conducted, focusing on the combined effects of important parameters included DC voltage, temperature variation, geometrical dimensions and ceramic volume concentration on the dynamic response and stability of the FGM micro-gripper.
Keywords
FGM micro-gripper; electrostatic force; intermolecular force; natural frequency; stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Akbarzadeh, A.H., Hosseini Zad, S.K., Eslami, M.R. and Sadighi, M. (2011), "Mechanical behaviour of functionally graded plates under static and dynamic loading", Proceedings of the Institution of Mechanical Engineers; Part C: J. Mech. Eng. Sci., 225(2), 326-333.   DOI
2 Andersen, K.N., Carlson, K., Petersen, D.H., Molhave, K., Eichhorn, K., Fatikow, S. and Molhave, P. (2008), "Electrothermal microgrippers for pick-and-place operations", Microelectron. Eng., 85(5-6), 1128-1130.   DOI
3 Beyeler, F., Neild, A., Oberti, S., Bell, D.J., Sun, Y., Dual, J. and Nelson, B.J. (2007), "Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field", Microelectromech. Syst., 16(1), 7-15.   DOI
4 Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216.   DOI
5 Butefisch, S., Seidemann, V. and Buttgenbach, S. (2002), "Novel micro-pneumatic actuator for MEMS", Sensor. Actuator. A: Phys., 97, 638-645.
6 Chen, T., Sun, L., Chen, L., Rong, W. and Li, X.F. (2010), "A hybrid-type electrostatically driven microgripper with an integrated vacuum tool", Sensor. Actuator. A: Phys., 158, 320-327.   DOI
7 Chronis, N. and Lee, L.P. (2005), "Electrothermally activated su-8 microgripper for single cell manipulation in solution", J. Microelectrome. Syst., 14(4), 857-863.   DOI   ScienceOn
8 Haddab, Y., Chaillet, N. and Bourjault, A. (2000), "A microgripper using smart piezoelectric actuators", Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000), Takamatsu, Japan, October-November.
9 Hasanyan, D.J., Betra, R.C. and Harutyunyan, S. (2010), "Pull-in instabilities in functionally graded microthermoelectromechanical systems", J. Therm. Stresses, 31(10), 1006-1021.   DOI
10 Hesselbach, J., Wrege, J. and Raatz, A. (2007), "Micro handling devices supported by electrostatic force", CIRP Annals - Manuf. Technol., 56(1), 45-48.   DOI
11 Hu, F., Yao, J., Qiu, C. and Ren, H. (2010), "A MEMS micromirror driven by electrostatic force", J. Electrostat., 68(3), 237-242.   DOI
12 Israelachvili, J.N. (2011), Intermolecular and Surface Forces, (Revised 3rd Edition), Academic Press.
13 Kang, Y.A. and Li, X.F. (2009), "Bending of functionally graded cantilever beam with power-law nonlinearity subjected to an end force", Int. J. Nonlinear Mech., 44(6), 696-703.   DOI
14 Kawamoto, H. and Tsuji, K. (2011), "Manipulation of small particles utilizing electrostatic force", Adv. Powder Technol., 22(5), 602-607.   DOI
15 Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92(3), 676-683.   DOI
16 Keller, C.G. (1998), "Microfabricated silicon high aspect ratio flexures for in-plane motion", Ph.D. Thesis, University of California, Berkeley, CA, USA.
17 Kim, C.-J. (1991), "Silicon electromechanical microgrippers: Design, fabrication, and testing", Ph.D. Thesis, University of California, Berkeley, CA, USA.
18 Kim, C.J., Pisano, A.P., Muller, R.S. and Lim, M.G. (1990), "Polysilicon microgripper", Sens. Actuators A Phys., 33(3), 221-227.
19 Kuznetsov, Y.A. (1997), Elements of Applied Bifurcation Theory, Springer-Verlag, New York, NY, USA.
20 Krecinic, F., Duc, T.C., Lau, G. and Sarro, P. (2008), "Finite element modelling and experimental characterization of an electro-thermally actuated silicon-polymer micro gripper", J. Micromech. Microeng., 18(6), 064007.   DOI
21 Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229.   DOI
22 Lin, W.H. and Zhao, Y.P. (2008), "Pull-in instability of micro-switch actuators: Model review", Int. J. Nonlinear Sci. Numer. Simul., 9(2), 175-183.   DOI
23 Mehrabadi, R.K. and Mirzaeian, V.R. (2009), "Buckling analyses of rectangular composed of functionally graded materials by the new version of DQ method subjected to non-uniform distributed in-plane loading", J. Solid Mech., 1, 58-72.
24 Millet, O., Bernardoni, P., Regnier, S., Bidaud, P., Tsitsiris, E., Collard, D. and Buchaillot, L. (2004), "Electrostatic actuated micro gripper using an amplification mechanism", Sens. Actuators A Phys., 114(2-3), 371-378.   DOI
25 Mohammadi-Alasti, B., Rezazadeh, G., Borgheei, M., Minaei, S. and Habibifar, R. (2011), "On the mechanical behavior of a functionally graded microbeam subjected to a thermal moment and nonlinear electrostatic pressure", Compos. Struct., 93(6), 1516-1525.   DOI
26 Nah, S.K. and Zhong, Z.W. (2007), "A microgripper using piezoelectric actuation for micro-object manipulation", Sens. Actuators A Phys., 133(1), 218-224.   DOI
27 Neagu, C., Jansen, H., Gardeniers, H. and Elwenspoek, M. (2000), "The electrolysis of water: an actuation principle for MEMS with a big opportunity", Mechatronics, 10(4), 571-581.   DOI   ScienceOn
28 Pan, C.S. and Hsu, W. (1997), "An electro-thermally and laterally driven polysilicon microactuator", J. Micromech. Microeng., 7(1), 7.   DOI
29 Ng, T.Y., Jiang, T.Y., Li, H., Lam, K.Y. and Reddy, J.N. (2004), "A coupled field study on the nonlinear dynamic characteristics of an electrostatic micropump", J. Sound Vib., 273(4-5), 989-1006.   DOI
30 Ogawa, E., Ikehashi, T., Saito, T., Yamazaki, H., Masunishi, K., Tomizawa, Y., Ohguro, T., Sugizaki, Y., Toyoshima, Y. and Shibata, H. (2011), "A creep-immune electrostatic actuator for RF-MEMS tunable capacitor", Sensor. Actuator. A: Phys., 169(2), 373-377.   DOI
31 Parate, O. and Gupta, N. (2011), "Material selection for electrostatic microactuators using Ashby approach", Mater. Des., 32(3), 1577-1581.   DOI
32 Park, S. and Gao, X. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng, 16(11), 2355.   DOI
33 Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D. and Schulte, K. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng., 362(1-2), 40-60.   DOI   ScienceOn
34 Ramezani, A., Alasty, A. and Akbari, J. (2006), "Influence of van der Waals force on the pull-in parameters of cantilever type nanoscale electrostatic actuators", Microsyst. Technol., 12(12), 1153-1161.   DOI
35 Rezazadeh, G., Tahmasebi, A. and Zubstov, M. (2006), "Application of piezoelectric layers in electrostatic MEM actuators: Controlling of pull-in voltage", Microsyst. Technol., 12(12), 1163-1170.   DOI
36 Sadeghian, H., Rezazadeh, G. and Osterberg, P.M. (2007), "Application of the generalized differential quadrature method to the study of pull-In phenomena of MEMS switches", J. Microelectromech. Syst., 16(6), 1334-1340.   DOI
37 Shariyat, M. (2009), "Vibration and dynamic buckling control of imperfect hybrid FGM plates with temperature-dependent material properties subjected to thermo-electro-mechanical loading conditions", Compos. Struct., 88(2), 240-252.   DOI
38 Sadowski, T., Boniecki, M., Librant, Z. and Nakonieczny, K. (2007), "Theoretical prediction and experimental verification of temperature distribution in FGM cylindrical plates subjected to thermal shock", Int. J. Heat Mass Transfer, 50(21-22), 4461-4467.   DOI
39 Saeedivahdat, A., Abdolkarimzadeh, F., Feyzi, A., Rezazadeh, G. and Tarverdilo, S. (2010), "Effect of thermal stresses on stability and frequency response of a capacitive microphone", Microelectron. J., 41(12), 865-873.   DOI
40 Sardan, O., Peterson, D.H., Molhave, K., Sigmund, O. and Boggild, P. (2008), "Topology optimized electrothermal polysilicon microgrippers", Microelectron. Eng., 85(5-6), 1096-1099.   DOI
41 Shi, F., Ramesh, P. and Mukherjee, S. (1995), "Simulation methods for micro-electro-mechanical structures (MEMS) with application to a Microgripper", Compos. Struct., 56(5), 769-783.   DOI
42 Simsek, M. (2009), "Static analysis of a functionally graded beam under a uniformly distributed load by ritz method", Int. J. Eng. Appl. Sci., 1(3), 1-11.
43 Simsek, M. (2010), "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories", Compos. Struct., 92(4), 904-917.   DOI
44 Song, M.T., Cao, D.Q. and Zhu, W.D. (2011), "Dynamic analysis of a micro-resonatoer driven by electrostatic combs", Cummun. Nonlinear Sci. Numer. Simulat., 16(8), 3425-3442.   DOI
45 Volland, B.E., Ivanova, K., Ivanov, T., Sarov, Y., Guliyev, E., Persaud, A., Zollner, J.P., Klett, S., Kostic, I. and Rangelowi, W. (2007), "Duo-action electro thermal micro gripper", Microelectron. Eng., 84(5-8), 1329-1332.   DOI
46 Taeprasartsit, S. (2011), "A buckling analysis of perfect and imperfect functionally graded columns", Proceedings of the Institution of Mechanical Engineers, Part L: J. Mater. Des. Appl., 226, 16-33.
47 Talha, M. and Singh, B.N. (2011), "Thermo-mechanical induced vibration characteristics of shear deformable functionally graded ceramic-metal plates using finite element method", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 225(1), 50-56.   DOI
48 Volland, B.E., Heerlein, H. and Rangelow, I.W. (2002), "Electrostatically driven microgripper", Microelectron. Eng., 61-62, 1015-1023.   DOI
49 Wen-Hui, L. and Ya-Pu, Z. (2003), "Dynamic behaviour of nanoscale electrostatic actuators", Chinese Phys. Lett., 20(11), 2070.   DOI
50 Zubir, M.N.M., Shirinzadeh, B. and Tian, Y. (2009), "A new design of piezoelectric driven compliant-based microgripper for micromanipulation", Mech. Mach. Theory, 44(12), 2248-2264.   DOI