• Title/Summary/Keyword: Intermetallic/metal

Search Result 130, Processing Time 0.023 seconds

Review of magnetic pulse welding

  • Kang, Bong-Yong
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • Magnetic pulse welding(MPW) is a solid state welding process that is accomplished by a magnetic pulse causing a high-velocity impact on two materials, resulting in a true metallurgical bond. One of the great advantages of MPW is that it is suitable for joining dissimilar metals. No heat affected zones are created because of the negligible heating and the clean surfaces formation that is a consequence of the jet and the metal is not degraded. Also, compared to other general welding processes, this process leads to only a low formation of brittle intermetallic compounds However, although this process has many advantages its application to industrial fields has so far been very low. Therefore, in this study we are presenting the principles, apparatus and application of MPW for application the industrial fields.

Microstructure Observation of Pd-Cu-Ga system Dental Alloy in Clinical Heat Treatment (치과용 Pd-Cu-Ga 계 함금의 임상조건에 따른 미세조직 관찰)

  • 김기주;이진형
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.443-449
    • /
    • 1999
  • 현재 시판되고 있는 치과용 76.5%Pd-11.6%Cu-7.2^%GarP 합금의 주조상태 및 임상열처리에 따른 미세조직의 변화를 X-선 회절기, 광학현미경, 시차열분석기를 이용하여 관찰하였다. 주조상태, 탈개스 및 세리믹소성처리 후 미세조직은 Pd고용체와 금속간화합물 Pd2Ga으로 구성되어 나타났고, 이들 상들은 열처리에 따라 상당한 변화를 보였다. 또한 Pd은 아르곤 분위기 내의 산소와 반응하여 산화물 형성 및 분해로 인해 질량변화곡선(TG)이 변하였고, 시차열분석(DTA)에서는 약 815$^{\circ}C$ 정도에서 Pd2Ga에 기인하는 흡열피크를 확인하였다. 이러한 실험의 결과들은 Cu가 이원계 Pd-Ga 합금의 Ga의 고용량을 낮추어 공정반응이 저 Ga 쪽으로 이동하기 때문인 것으로 설명하였다. 그러나 앞으로 보다 명확한 상변태 규명을 위해서 TEM등의 분석장비를 사용하여 체계적인 연구가 요구된다.

  • PDF

A Study on Mechanical properties of Aluminized Steel Plate (熔融알루미늄 鍍金한 鋼板의 機械的 性質에 關한 硏究)

  • Kim, Suk-Yoon;Choi, Chong-Sool
    • Journal of the Korean institute of surface engineering
    • /
    • v.13 no.2
    • /
    • pp.81-86
    • /
    • 1980
  • The mechanical properties of aluminized steel were investigated after the JIS SB 41 plates were dipped in molten aluminum bath. (1) The growth rate of iron-aluminum alloy layer was fast in early stage of alumizing, and then gradually decreased with increasing time. However, over the time period above 10 minutes the growth of alloy layer did not occur. (2) The constituent of alloy layer formed on the steel surface was identified to be intermetallic compound of $Fe_2\;Al_5$. (3) The ultimate tensile strength and elongation of aluminized steel showed a nearly constant value over all thickness below about 0.15 mm. However, both properties decreased rapidly in showed a nearly constant value over all thickness above about 0.20 mm. (4) In case of aluminized steel with greater thickness, crack was formed below yield point of base metal, which is considered to be attributed to the alloy layer failure.

  • PDF

TLP and Wire Bonding for Power Module (파워모듈의 TLP 접합 및 와이어 본딩)

  • Kang, Hyejun;Jung, Jaepil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.7-13
    • /
    • 2019
  • Power module is getting attention from electronic industries such as solar cell, battery and electric vehicles. Transient liquid phase (TLP) boding, sintering with Ag and Cu powders and wire bonding are applied to power module packaging. Sintering is a popular process but it has some disadvantages such as high cost, complex procedures and long bonding time. Meanwhile, TLP bonding has lower bonding temperature, cost effectiveness and less porosity. However, it also needs to improve ductility of the intermetallic compounds (IMCs) at the joint. Wire boding is also an important interconnection process between semiconductor chip and metal lead for direct bonded copper (DBC). In this study, TLP bonding using Sn-based solders and wire bonding process for power electronics packaging are described.

Sintered $Fe_3Al$ Intermetallic - A New Filter Element for Hot Gas Filtration

  • Xing, Y.;Kuang, X.;Wang, F.;Kuang, C.;Fang, Y.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.597-598
    • /
    • 2006
  • Gas filtration at high temperature from industrial processes offers various advantages such as increasing process efficiency, improving heat recovery and materials resource recovery, etc. At the same time, it is an advanced environment protection technology. This paper describes a newly developed metallic filter element. The manufacturing process of sintered $Fe_3Al$ metallic powder and the mechanical and filtration characteristics of this filter element were investigated. In this work, the phase constituent changes of the $Fe_3Al$ powder during sintering were studied. The newly developed filter elements were found to have excellent corrosion resistance, good thermal resistance, high strength and high filtration efficiency.

  • PDF

Evaluation of Joint Properties of Friction Stir Welded AZ31B Mg Alloy (FSW를 이용한 AZ31B Mg합금의 접합성 평가)

  • 노중석;김흥주;장웅성;방국수
    • Journal of Welding and Joining
    • /
    • v.22 no.3
    • /
    • pp.56-61
    • /
    • 2004
  • Friction stir weldability of AZ31B Mg alloy was studied using microstructural observation and mechanical tests. Defect free joints was obtained under the condition of 2000rpm-100mm/min. In TMAZ, a lot of twin deformation were observed due to the mechanical effect of the FSW tool and thus relatively high hardness was obtained. In SZ, the twin deformation was disappeared by recovery and the hardness decreased because the. grain structure was coarsened by dynamic recrystallization and grain growth. The Al-Mn precipitates were observed throughout the joint regions. On the other hand, $$\beta$-Mg_{17}Al_{12}$ intermetallic compounds were not observed in either of the zone. The joint efficiency was about 80% and the impact value of the joint was almost equal to that of base metal.

The Wetting Property of Sn-3.5Ag Eutectic Solder (Sn-3.5Ag 공정 솔더의 젖음특성)

  • 윤정원;이창배;서창제;정승부
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.91-96
    • /
    • 2002
  • Three different kinds of substrate used in this study : bare Cu, electroless Ni/Cu substrate with a Nilayer thickness of $5\mu\textrm{m}$, immersion Au/electroless Ni/Cu substrate with the Au and Ni layer of $0.15\mu\textrm{m}$ and $5\mu\textrm{m}$ thickness, respectively. The wettability and interfacial tension between various substrate and Sn-3.5Ag solder were examined as a function of soldering temperature, types of flux. The wettability of Sn-3.5Ag solder increased with soldering temperature and solid content of flux. The wettability of Sn-3.5Ag solder was affected by the substrate metal finish used, i.e., nickel, gold and copper. Intermetallic compound formation between liquid solder and substrate reduced the interfacial energy and decreased wettability.

A Study on Mechanical Properties of Galvanized Steel Plate (용융아연도금한 강판의 기술적 성질에 관한 연구)

  • 정동원;곽창섭;최종술
    • Journal of the Korean institute of surface engineering
    • /
    • v.16 no.4
    • /
    • pp.153-159
    • /
    • 1983
  • The growth rate equation of Fe-Zn alloy layer was represented by x = Kt, and hence the growth of alloy layer was considered to be controlled by diffusion process. The constituent of alloy layer formed on the steel surface was identified to be intermetallic compound of Fe3Zn10 and FeZn10. The ultimate tensile strength and elongation of galvanized steel showed a nearly constant value at the thickness below about 30$\mu\textrm{m}$, and both properties decreased with increasing thickness above about 30$\mu\textrm{m}$. In the case of galvanied steel with a great thickness of alloy layer, crack was formed below yield point of base metal, which is considered to be attributed to the alloy layer failure.

  • PDF

Interfacial Properties of Friction-Welded TiAl and SCM440 Alloys with Cu as Insert Metal (삽입금속 Cu를 이용한 TiAl 합금과 SCM440의 마찰용접 계면 특성)

  • Park, Sung-Hyun;Kim, Ki-Young;Park, Jong-Moon;Choi, In-Chul;Ito, Kazuhiro;Oh, Myung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.258-263
    • /
    • 2019
  • Since the directly bonded interface between TiAl alloy and SCM440 includes lots of cracks and generated intermetallic compounds(IMCs) such as TiC, FeTi, and $Fe_2Ti$, the interfacial strength can be significantly reduced. Therefore, in this study, Cu is selected as an insert metal to improve the lower tensile strength of the joint between TiAl alloy and SCM440 during friction welding. As a result, newly formed IMCs, such as $Cu_2TiAl$, CuTiAl, and $TiCu_2$, are found at the interface between TiAl alloy and Cu layer and the thickness of IMCs layers is found to vary with friction time. In addition, to determine the relationship between the thickness of the IMCs and the strength of the welded interfaces, a tensile test was performed using sub-size specimens obtained from the center to the peripheral region of the friction-welded interface. The results are discussed in terms of changes in the IMCs and the underlying deformation mechanism. Finally, it is found that the friction welding process needs to be idealized because IMCs generated between TiAl alloy and Cu act to not only increase the bonding strength but also form an easy path of fracture propagation.

The fabrication and characterization of hard rock cutting diamond saw (석재가공용 다이아몬드 톱의 제조 및 특성)

  • Lee Hyun-Woo;Jeon Woo-yong;Lee Oh-yeon;Seol Kyeong-won
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.412-420
    • /
    • 2004
  • The purpose of the present study is to determine an optimum composition using cheaper powders keeping with high performance of hard rock cutting diamond saw blade. With 50Fe-20(Cu . Sn)-30Co specimen, a part of Co was replaced by Ni(5%, 10%, and 15%, respectively). These specimens were hot pressed and sintered for predetermined time at various temperature. Sintering is performed by two different methods of temperature controlled method and specimen dimension controlled method. In order to determine the property of the sintered diamond saw blade, 3 point bending tester, X-ray diffractometer, and SEM were used. As the Co in the bond alloy was replaced by Ni, the hardness of the specimen increased. Thus the 50Fe-20(CuㆍSn)-15Co-15Ni specimen showed the maximum hardness of 104(HRB). The results of 3 point bending test showed that flexure strength decreased along with increase in Ni content. This is attributed to the formation of intermetallic compound(Ni$_{x}$Sn) determined by X-ray diffraction. The fracture surface after 3 point bending test showed that diamond was fractured in the specimen containing 0%, 5%, and 10%Ni, and the fracture occurred at the interface between diamond and matrix in the specimen containing 15%Ni. The cutting ability test showed that the abrasive property was not changed in the specimen containing 0%, 5%, and 10%Ni. The optimum composition determined in this study is 50Fe-20(CuㆍSn)-20Co-10Ni.