• Title/Summary/Keyword: Intermetallic/metal

Search Result 130, Processing Time 0.026 seconds

Crack propagation behavior of in-situ structural gradient Ni/Ni-aluminide//Ti/Ti-aluminide laminate materials (Ni/Ni-aluminide//Ti/Ti-aluminide 구조경사형 층상재료의 균열 전파 거동)

  • Chung, D.S.;Kim, J.K.;Cho, H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.269-275
    • /
    • 2005
  • Ni/Ni-aluminide/Ti/Ti-aluminide laminate composite, considered as a functionally gradient material, was manufactured by thin foil hot press technique. Thick intermetallic layers of NiAl and $TiAl_3$ were formed by a self-propagating high-temperature synthesis (SHS) reaction, and thin continuous taters of $Ni_3Al$ and TiAl were formed by a solid-state diffusion. Fracture resistance with loading along the crack arrester direction is higher than crack divider direction due to the interruption of crack growth in metal layers. The $Ni_3Al$ and NiAl intermetallic layer showed cleavage and intergranular fracture behavior, respectively, while the fracture mode of $TiAl_3$ layer was found to be an intragranular cleavage. The debonding between metal and intermetallic layer and the pores were observed in the Ni/Ni-aluminide layers, resulting in the lower fracture resistance. With the results of acoustic emission (AE) source characterization the real time of failure and the effect of AE to crack growth could be monitored.

A Study on the Improvement of Fatigue Strength in Particulate Reinforced Metal Matrix Composites at Elevated Temperatures (입자강화 금속기 복합재료의 고온 피로강도 향상에 관한 연구)

  • Sin, Hyeong-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1146-1154
    • /
    • 2000
  • Fatigue strength of NiAl and Ni$_3$Al particulate reinforced aluminum alloy composites fabricated by the diecasting method was examined at room and elevated temperatures. The results were compared wit h that of SiC particulate reinforced one. The particulate reinforced composites showed some improvement in the static and fatigue strength at elevated temperatures when compared with that of Al alloy. The composites reinforced by intermetallic compound particles showed good fatigue strengths at elevated temperatures especially $Ni_3AI_{p}/Al$ alloy composite showed good fatigue limit up to high temperature of 30$0^{\circ}C$. Adopting intermetallic compound particle as a reinforcement phase, it will be possible to develop MMC representing better fatigue property at elevated temperature.

Fraccture Behavior of Recation Squeeze Cast ($AI_20_3{\cdot}SiO_2+Ni$)/Al Hybrid Metal Matrix Composites (반응 용탕단조한(AI203 . SIO2+Ni)/Al하이브리드 금속복합재료의 파괴거동 특성)

  • 김익우;김상석;박익민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.67-70
    • /
    • 2000
  • Mechanical properties of (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al hybrid composites fabricated by the reaction squeeze casting were compared with those of (15%$AI_20_3{\cdot}SiO_2$)/Al composites. Intermetallic compound formed by reaction between molten aluminum and reinforcing powder was uniformly distributed in the Al matrix. These intermetallic compounds were identified as $Al_3$NI using EDS and X-ray diffraction analysis. Microhardness and flexural strength of hybrid composites were higher than that of (15%$AI_20_3{\cdot}SiO_2$)/Al Composite. In-Situ fracture tests were Conducted on (15%$AI_20_3{\cdot}SiO_2$)/Al Composites and (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al hybrid composites to identify the microfracture process. It was identified from the in-situ fracture test of (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al composites, microcracks were initiated mainly at the short fiber / matrix interfaces. As the loading was continued, the crack propagated mainly along the separated interfacial regions and the well developed shear bands. It was identified from the in-situ fracture test of (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al hybrid composites, microcracks were initiated mainly by the short fiber/matrix interfacial debonding. The crack proceeded mainly through the intermetallic compound clusters

  • PDF

Formation of Fe-Al Intermetallic Compound in GMAW Overlay (GMAW오버레이의 Fe-Al 금속간화합물의 형성)

  • 김병수;박경채;조상흠
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.240-241
    • /
    • 2003
  • The iron aluminides have been among the most widely studied intermetallics because of their low cost, low density, good wear resistance, ease of fabrication and resistance to oxidation and corrosion. In this study, weld overlay was performed with JIS-YGW11 and A14043 wire on the base metal.

  • PDF

Microstructrue and Mechanical Properties of A3003 Aluminium Alloy Welds by Heat-treatment (열처리된 A3003 알루미늄합금 용접부의 미세조직 및 기계적 특성)

  • Lee, Il-Cheon;Song, Yeong-Jong;Gook, Jin-Seon;Yoon, Dong-Joo;Kim, Byung-Il
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.51-57
    • /
    • 2007
  • The present work was aimed to examine the variation of microstructure and mechanical properties by annealing($100{\sim}620^{\circ}C$, $2{\sim}8hr$) in A3003 Al alloy welded pipes. The A3003 Al alloy pipes with 34 mm in external diameter and 1.3 mm in thickness were manufactured by high frequency induction welding with the V shaped convergence angle $6.7^{\circ}$ and power input 50 kW. The tensile and yield strength decreased with increasing the annealing temperature remarkably, but elongation increased remarkably. Vickers hardness in welds decreased with increasing the annealing temperature remarkably. The primary intermetallic compound of $Al_{12}(Fe,\;Mn)_2Si$ was precipitated in welds as the same base metal. In a certain experimental condition, the welds line in A3003 alloys disappeared at $450^{\circ}C$ for 2 hr because of the same mechanical property and structure between welds and base metal.

Shear Strength and Aging Characteristics in Solder Bumps for High Reliability Optical Module (고신뢰성 광모듈을 위한 솔더 범프의 전단강도와 시효 특성)

  • 유정희
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.97-101
    • /
    • 2003
  • The change of microstructures in the base metal during transient liquid phase bonding process of directionally Ni base superalloy, GID-111 was investigated. Bonds were fabricated using a series of holding times(0~7.2ks) at three different temperatures. The flip chip bonding utilizing self-aligning characteristic of solder becomes mandatory to meet tolerances for the optical device. In this paper, a parametric study of aging condition and pad size of samples was evaluated. A TiW/Cu/electroplated Cu UBM structure was selected and the samples were aging treated to analyze the effect of intermetallic compounds with the time variations. An FIB technique was applied to the preparation of samples for TEM observations. An FIB technique is very useful to prepare TEM thin foil specimens from the solder joint interface. After aging treatment, the tendency to decrease in shear strength was measured and the structure of the solder and the UBM was observed by using SEM, TEM and EDS. As a result, the shear strength was decreased of about 21% in the 100${\mu}{\textrm}{m}$ sample at 17$0^{\circ}C$ aging compared with the maximum shear strength of the sample with the same pad size. In the case of the 12$0^{\circ}C$ aging treatment, 18% of decrease in shear strength was measured at the 100${\mu}{\textrm}{m}$ pad size sample. An intermetallic compound of Cu6Sn5 and Cu3Sn were also observed through the TEM measurement by using.

Interfacial Characteristics of Al-Cu Cast Composites for High Conductivity Applications (고전도성 부품용 Al-Cu 주조복합재료의 계면 특성)

  • Kim, Jeong-Min;Kim, Nam-Hoon;Ko, Se-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.38 no.3
    • /
    • pp.55-59
    • /
    • 2018
  • To optimize the conductivity and to reduce the weight by as much as possible, Al-Cu composites were prepared through a suction-casting procedure. Pure copper metal foam was infiltrated by melted aluminum with the use of the vacuum, after which warm rolling was conducted to remove several remaining pores at the interface between the Cu foam and the aluminum matrix. Despite the short casting time, significant dissolution of Cu into the melt was observed. Moreover, it was found that various Al-Cu intermetallic compounds arose at the interface during the isothermal heating process after the casting and rolling steps. The average thickness of the Al-Cu intermetallic compound tended to increase in proportion to the heating time. The electrical and thermal conductivity levels of the cast composites were found to be comparatively low, mainly due to the dissolution of the Cu foam and the formation of intermetallics at the interface.

Welding Characteristics of Aluminized Steel Sheet by Nd:YAG Laser(II) - Behavior of Al element in the weld - (Nd:YAG 레이저를 이용한 알루미늄도금강판의 용접성(II) - 용접부내 알루미늄의 거동 -)

  • Kim, Jong-Do;Lee, Jung-Han;Kim, Ki-Chol
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.72-78
    • /
    • 2007
  • Aluminized steel sheet is a material with excellent heat resistance, thermal reflection and corrosion resistance. It has wide applications, owing to its low cost and excellent performance, in the petrochemical industry, electric power and other energy conversion systems, etc and has attracted the attention of many investigators. But the welding of aluminized steel sheet has a problem of decreasing tensile-shear strength, caused by mixed Al in the weld. This study investigated behavior of Al and its structural properties to resolve this problem. Several analysis equipment(SEM, EDX, EPMA) were used to investigate Al element in the weld. Also microhardness tester and TEM equipment were used to find the intermetallic compound. As a result of this study, Al-rich zones existed in the weld and Fe-Al intermetallic compounds were found in these zones. At the same time, the weldability of aluminized stainless steel sheet was investigated and compared with that of aluminized steel sheet. Although there is a difference between the base metal of the low carbon steel and stainless steel, it is interpreted that a behavior of Al element in the weld is similar.

Post Annealing Effects on the Electrical Properties of Polysilicon Metal-Semiconductor-Metal Photodetectors (폴리 실리콘을 이용한 금속-반도체-금속 광 검출기의 열처리에 따른 전기적 특성)

  • Kim, Kyeong-Min;Kim, Jung-Yeul;Lee, You-Kee;Choi, Yong-Sun;Lee, Jae-Sung;Lee, Young-Ki
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.195-200
    • /
    • 2018
  • This study investigated the effects of the post annealing temperatures on the electrical and interfacial properties of a metal-semiconductor-metal photodetector(MSM-PD) device. The interdigitate type MSM-PD devices had the structure Al(500 nm) / Ti(200 nm) / poly-Si(500 nm). Structural analyses of the MSM-PD devices were performed by employing X-ray diffraction(XRD), scanning electron microscopy(SEM) and transmission electron microscope(TEM). Electrical characteristics of the MSM-PD were also examined using current-voltage(I-V) measurements. The optimal post annealing condition for the Schottky contact of MSM-PD devices are $350^{\circ}C$-30minutes. However, as the annealing temperature and time are increased, electrical characteristics of MSM-PD device are degraded. Especially, for the annealing conditions of $400^{\circ}C$-180minutes and $500^{\circ}C$-30minutes, the I-V measurement itself was impossible. These results are closely related to the solid phase reactions at the interface of MSM-PD device, which result in the formation of intermetallic compounds such as $Al_3Ti$ and $Ti_7Al_5Si_{12}$.