Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.4.195

Post Annealing Effects on the Electrical Properties of Polysilicon Metal-Semiconductor-Metal Photodetectors  

Kim, Kyeong-Min (Department of Information & Electronics Engineering, Uiduk University)
Kim, Jung-Yeul (Division of Green Energy Engineering, Uiduk University)
Lee, You-Kee (Division of Green Energy Engineering, Uiduk University)
Choi, Yong-Sun (Department of Information & Electronics Engineering, Uiduk University)
Lee, Jae-Sung (Division of Green Energy Engineering, Uiduk University)
Lee, Young-Ki (Division of Green Energy Engineering, Uiduk University)
Publication Information
Korean Journal of Materials Research / v.28, no.4, 2018 , pp. 195-200 More about this Journal
Abstract
This study investigated the effects of the post annealing temperatures on the electrical and interfacial properties of a metal-semiconductor-metal photodetector(MSM-PD) device. The interdigitate type MSM-PD devices had the structure Al(500 nm) / Ti(200 nm) / poly-Si(500 nm). Structural analyses of the MSM-PD devices were performed by employing X-ray diffraction(XRD), scanning electron microscopy(SEM) and transmission electron microscope(TEM). Electrical characteristics of the MSM-PD were also examined using current-voltage(I-V) measurements. The optimal post annealing condition for the Schottky contact of MSM-PD devices are $350^{\circ}C$-30minutes. However, as the annealing temperature and time are increased, electrical characteristics of MSM-PD device are degraded. Especially, for the annealing conditions of $400^{\circ}C$-180minutes and $500^{\circ}C$-30minutes, the I-V measurement itself was impossible. These results are closely related to the solid phase reactions at the interface of MSM-PD device, which result in the formation of intermetallic compounds such as $Al_3Ti$ and $Ti_7Al_5Si_{12}$.
Keywords
MSM-PD; intermetallic compounds; current-voltage (I-V); post annealing; interfacial properties;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Li and W. A. Anderson, Solid State Electron., 51, 94 (2007).   DOI
2 L.-H. Laih, T.-C. Chang, Y.-A. Chen, W.-C. Tsay, and J.-W. Hong, IEEE Trans. Electron. Devices, 45, 2018 (1998).   DOI
3 T. Masui, S. Khunkhao, K. Kobayashi, S. Niemcharoen, S. Supadech, and K. Sato, Solid-State Electron., 47, 1385 (2003).   DOI
4 R. P. MacDonald, N. G. Tarr, B. A. Syrett, S. A. Boothroyd, and J. Chrostowski, IEEE Photon. Technol. Lett., 11, 108 (1999).   DOI
5 C. S. Oh, S.W. Kim, and C. S. Han, Korean J. Mater. Res., 27, 8 (2017).   DOI
6 C. Y. Ting and B. L. Crowder, J. Electrochem. Soc.: Solid-State Sci. and Tech., 129, 2590 (1982).
7 S. J. Jeong, S. M. Kim, Y. M. Kang, H. S. Lee, and D. H. Kim, Korean J. Mater. Res., 26, 422 (2016).   DOI
8 D. P. Poenar and R. F. Wolffenbuttel, Appl. Opt., 36, 5122 (1997).   DOI
9 S. Y. Chou, Y. Liu, W. Khalil, T. Y. Hsiang, and S. Alexandrou, Appl. Phys. Lett., 61, 819 (1992).   DOI
10 J.-W. Shi, K.-G. Gan, Y.-J. Chiu, C.-K. Sun, Y.-J. Yang, and J. E. Bowers, IEEE Photon. Technol. Lett., 16, 623 (2001).
11 R. Hussin, Y. Chen, and Y. Luo, Appl. Phys. Lett., 102, 093507 (2013).   DOI
12 S. Averine, Y. C. Chan, and Y. L. Lam, Appl. Phys Lett., 77, 274 (2000).   DOI
13 S. Verghese, J. R. Hauser, J. J. Wartman, and S. E. Kerns, IEEE Trans. Electron. Devices, 36, 1311 (1989).   DOI
14 Z. Hassan, Y. C. Lee, F. K. Yam, M. J. Abdullah, K. Ibrahim, and M. E. Kordesch, Mater. Chem. Phys., 84, 369 (2004).   DOI