• Title/Summary/Keyword: Intermediate Node

Search Result 164, Processing Time 0.022 seconds

A Novel Scheme for an RSVP Session Handoff in Wireless IP Networks with Micro-Mobility (Micro-Mobility 환경에서의 RSVP Session Handoff를 위한 연구)

  • Kim, Jeong-Hoe;Min, Sang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4B
    • /
    • pp.199-206
    • /
    • 2008
  • In this paper, we propose a novel Route_Reconf message as the RSVP message to maintain an RSVP session for hard handoff and consider path-comparing route (PCR) a PCR algorithm to find an intermediate node in the charge of downlink re-establishment. And, we consider information form each mode for the PCR algorithm, which also reduces the frequency and amount of exchanged RSVP message to minimize packet loss and delay between an intermediate node and a receiver. According to the proposed algorithm, a new support node (NSN) and an existing support node (ESN) along the RSVP path can be found; the former is a supporting RSVP session node newly searched and the latter is the last supporting node holding the previous session after handoff. On receiving the Route_Reconf message at the ESN, a new allocated route from a NSN to the MN waiting for the handoff via a new AR is configured by the ESN.

A Novel Scheme for an RSVP Session Handoff in Wireless IP Networks with Micro-Mobility (Micro-Mobility 환경에서의 RSVP Session Handoff를 위한 연구)

  • Kim, Jeong-Hoe;Min, Sang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5B
    • /
    • pp.296-303
    • /
    • 2008
  • In this paper, we propose a novel Route_Reconf message as the RSVP message to maintain an RSVP session for hard handoff and consider a path-comparing route(PCR) algorithm to find an intermediate node in the charge of down-link re-establishment. And, we consider information form each mode for the PCR algorithm, which also reduces the frequency and amount of exchanged RSVP message to minimize packet loss and delay between an intermediate node and a receiver. According to the proposed algorithm, a new support node(NSN) and an existing support node(ESN) along the RSVP path can be found; the former is a supporting RSVP session node newly searched and the latter is the last supporting node holding the previous session after handoff. On receiving the Route_Reconf message at the ESN, a new allocated route from a NSN to the MN waiting for the handoff via a new access router is configured by the ESN.

Performance Variations of AODV, DSDV and DSR Protocols in MANET under CBR Traffic using NS-2.35

  • Chandra, Pankaj;Soni, Santosh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.13-20
    • /
    • 2022
  • Basically Mobile Ad Hoc Network (MANET) is an autonomous system with the collection of mobile nodes, these nodes are connected to each other by using wireless networks. A mobile ad hoc network poses this quality which makes topology in dynamic manner. As this type of network is Ad Hoc in nature hence it doesn't have fixed infrastructure. If a node wishes to transfer data from source node to a sink node in the network, the data must be passed through intermediate nodes to reach the destination node, hence in this process data packet loss occurs in various MANET protocols. This research study gives a comparison of various Mobile Ad Hoc Network routing protocols like proactive (DSDV) and reactive (AODV, DSR) by using random topology with more intermediate nodes using CBR traffic. Our simulation used 50, 100, and 150 nodes variations to examine the performance of the MANET routing protocols. We compared the performance of DSDV, AODV and DSR, MANET routing protocols with the result of existing protocol using NS-2 environment, on the basis of different performance parameters like Packet Delivery Ratio, average throughput and average end to end delay. Finally we found that our results are better in terms of throughput and packet delivery ratio along with low data loss.

GPS-Based Shortest-Path Routing Scheme in Mobile Ad Hoc Network

  • Park, Hae-Woong;Won, Soo-Seob;Kim, So-Jung;Song, Joo-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1529-1532
    • /
    • 2004
  • A Mobile Ad Hoc NETwork (MANET) is a collection of wireless mobile nodes that forms a temporary network without the need for any existing network infrastructure or centralized administration. Therefore, such a network is designed to operate in a highly dynamic environment due to node mobility. In mobile ad hoc network, frequent topological changes cause routing a challenging problem and without the complete view of the network topology, establishing the shortest path from the source node to the destination node is difficult. In this paper, we suggest a routing approach which utilizes location information to setup the shortest possible path between the source node and the destination node. Location information is obtained through Global Positioning System (GPS) and this geographical coordinate information of the destination node is used by the source node and intermediate nodes receiving route request messages to determine the shortest path to the destination from current node.

  • PDF

Node Density Based Routing in Ad Hoc Networks (노드 밀집도 기반 애드학 라우팅)

  • Kim Sang-Kyung;Choi Seung-Sik
    • The KIPS Transactions:PartC
    • /
    • v.12C no.4 s.100
    • /
    • pp.535-542
    • /
    • 2005
  • This paper proposes an on-demand ad hoc routing protocol, Node Density Based Routing (NDBR), which enhances the routing performance applying a new method to establish alternate patlis. It is important to reserve alternate paths for the route from source to destination in mobile ad hoc networks that are susceptible to failure due to the movement or the power exhaustion of mobile nodes. NDBR aims to establish a route that contains more alternate paths toward the destination by involving intermediate nodes with relatively more adjacent nodes in a possible route, and introduces a new routing criterion called 'node density.' This approach can localize the effects of route failures, and reduce control traffic overhead and route reconfiguration time by enhancing the reachability to the destination node without source-initiated route re-discoveries at route failures. This paper describes the route setup procedure using node density and the route re-configuration procedures employing alternate path information at the intermediate nodes. We show the performance of our routing schemes through a series of simulations using the Network Simulator 2 (ns-2).

An Analysis of the Secret Routing Algorithm for Secure Communications (안전한 통신을 위한 비밀 경로 알고리즘의 분석)

  • Yongkeun Bae;Ilyong Chung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.7 no.3
    • /
    • pp.105-116
    • /
    • 1997
  • Routing security is related to the confidentiality of the route taken by the data transmitted over the network. If the route is detected by the adversary, the probability is higher that the data are lost or the data can be intercepted by the adversary. Therefore, the route must be protected. To accomplish this, we select an intermediate node secretly and transmit the data using this intermediate node, instead of sending the data to the destination node using the shortest path. Furthermore, if we use a number of secret routes from the starting node to the destination node, data security is much stronger since we can transmit partial data rather than the entire data along a secret route. In this paper, the routing algorithm for multiple secret paths on MRNS(Mixed Radix Number System) Network, which requires O(1) for the time complexity where is the number of links on a node, is presented employing the HCLS(Hamiltonian Circuit Latin Square) and is analyzed in terms of entropy.

Multihop Rate Adaptive Wireless Scalable Video Using Syndrome-Based Partial Decoding

  • Cho, Yong-Ju;Radha, Hayder;Seo, Jeong-Il;Kang, Jung-Won;Hong, Jin-Woo
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.273-280
    • /
    • 2010
  • The overall channel capacity of a multihop wireless path drops progressively over each hop due to the cascading effect of noise and interference. Hence, without optimal rate adaptation, the video quality is expected to degrade significantly at any client located at a far-edge of an ad-hoc network. To overcome this limitation, decoding and forwarding (DF), which fully decodes codewords at each intermediate node, can be employed to provide the best video quality. However, complexity and memory usage for DF are significantly high. Consequently, we propose syndrome-based partial decoding (SPD). In the SPD framework an intermediate node partially decodes a codeword and relays the packet along with its syndromes if the packet is corrupted. We demonstrate the efficacy of the proposed scheme by simulations using actual 802.11b wireless traces. The trace-driven simulations show that the proposed SPD framework, which reduces the overall processing requirements of intermediate nodes, provides reasonably high goodput when compared to simple forwarding and less complexity and memory requirements when compared to DF.

Intermediate Node Mobility Management Technique by Real-Time Monitoring in CCN Environment (CCN 환경에서 실시간 모니터링에 의한 중간노드 이동성 관리 기법)

  • Ko, Seung-Beom;Kwon, Tae-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.783-790
    • /
    • 2022
  • The development of SNS and video platforms provided an opportunity to explode the activation of content production and consumption. However, in the legacy system, due to the host-based location-oriented data transmission, there are inherent limitations in efficient operation and management. As an alternative to this, a Contents Centric Network (CCN) was studied. In this paper, when intermediate nodes located between the information provider and the information requester between the real-time streaming services in the CCN environment move or restrict their use, failure through monitoring of wireless reception strength to solve problems like disconnection of transmission quality at the information consumer. We propose a stable intermediate node management mechanism through active response before occurrence.

A Data Caching Management Scheme for NDN (데이터 이름 기반 네트워킹의 데이터 캐싱 관리 기법)

  • Kim, DaeYoub
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.291-299
    • /
    • 2016
  • To enhance network efficiency, named-data networking (NDN) implements data caching functionality on intermediate network nodes, and then the nodes directly respond to request messages for cached data. Through the processing of request messages in intermediate node, NDN can efficiently reduce the amount of network traffic, also solve network congestion problems near data sources. Also, NDN provides a data authenticate mechanism so as to prevent various Internet accidents caused from the absence of an authentication mechanism. Hence, through applying NDN to various smart IT convergence services, it is expected to efficiently control the explosive growth of network traffic as well as to provide more secure services. Basically, it is important factors of NDN which data is cached and where nodes caching data is located in a network topology. This paper first analyzes previous works caching content based on the popularity of the content. Then ii investigates the hitting rate of caches in each node of a network topology, and then propose an improved caching scheme based on the result of the analyzation. Finally, it evaluates the performance of the proposal.

On the Heterogeneous Postal Delivery Model for Multicasting

  • Sekharan, Chandra N.;Banik, Shankar M.;Radhakrishnan, Sridhar
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.536-543
    • /
    • 2011
  • The heterogeneous postal delivery model assumes that each intermediate node in the multicasting tree incurs a constant switching time for each message that is sent. We have proposed a new model where we assume a more generalized switching time at intermediate nodes. In our model, a child node v of a parent u has a switching delay vector, where the ith element of the vector indicates the switching delay incurred by u for sending the message to v after sending the message to i-1 other children of u. Given a multicast tree and switching delay vectors at each non-root node 5 in the tree, we provide an O(n$^{\frac{5}{2}}$) optimal algorithm that will decide the order in which the internal (non-leaf) nodes have to send the multicast message to its children in order to minimize the maximum end-to-end delay due to multicasting. We also show an important lower bound result that optimal multicast switching delay problem is as hard as min-max matching problem on weighted bipartite graphs and hence O(n$^{\frac{5}{2}}$) running time is tight.