• Title/Summary/Keyword: Interlopers

Search Result 5, Processing Time 0.027 seconds

Study of the Resonance Structures of the Preionizing Spectrum of Molecular Hydrogen by Phase-shifted Multichannel Quantum Defect Theory

  • Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.809-817
    • /
    • 2012
  • The resonance structure of the preionization spectrum of $H_2$ in the region immediately above its ionization threshold, ($^2{\sum}_{g}^{+}$, $\nu^+=0$, $N^+=0$) converging toward its rotationally excited ($\nu^+=0$, $N^+=2$) limit, is complicated due to perturbation by the vibrationally excited levels $7_{p\pi}\;v=1$ and $57_{p\pi}\;v=2$. The spectra of interlopers are separated from the rotationally preionizing Rydberg series to allow analysis of this complex resonance structure. Although only two vibrationally excited levels perturb the rotational preionization spectrum, at least 6 interloper Rydberg series participate in the complex spectrum over most of its energy range and more interloper series participate at a narrow range around $124500cm^{-1}$ in the spectrum. To allow handling of an arbitrary number of interloper series, MATLAB$^{(R)}$'s symbolic operation is used to perform on-the-fly formulation.

Relations between Resonance Structures in Photoionization Spectra in Three-Channel-Systems Studied by Multichannel Quantum Defect Theory

  • Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2168-2176
    • /
    • 2012
  • Relations between fitted parameters for photoionization spectra both below and above the thresholds in the systems involving 3 channels are obtained using phase-shifted version of the multichannel quantum-defect theory. Analytical continuation of the photoionization cross sections in the form of ${\langle}{\sigma}_{below}{\rangle}_{v_{below}}={\sigma}_{above}$ examined using several representations.

Study of the Resonance Structures of the Preionizing Spectrum of Molecular Hydrogen by Phase-Shifted Multichannel Quantum Defect Theory II

  • Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2657-2668
    • /
    • 2012
  • We obtain the general formulation which can handle the rotational preionization spectrum of $H_2$ in the region above its ${H_2}^+$ ionization threshold, ($^2{\sum}_g^+$, ${\nu}^+=0$, $N^+=0$) converging toward its rotationally excited (${\nu}^+=0$, $N^+=2$) limit and perturbed by the vibrationally excited levels $7p{\pi}$ ${\nu}=1$ and $5p{\pi}$ ${\nu}^=2$. The formulation is based on phase-shifted multichannel quantum-defect theory. With this formulation, resonance structures are analyzed in detail.

z~6 i-DROPOUT GALAXIES IN THE SUBARU /XMM-NEWTON DEEP FIELD

  • OTA KAZUAKI;KASHIKAWA NOBUNARI;NAKAJIMA TADASHI;IYE MASANORI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.179-182
    • /
    • 2005
  • We conducted an extremely wide field survey of z ${\~}$ 6 Lyman break galaxies (LBGs) to precisely derive their bright end surface density overcoming the bias due to cosmic variance. We selected out LBG candidates in the Subaru/ XMM-Newton Deep Survey Field (SXDS) over the total of ${\~}1.0\;deg^2$ sky area down to $z_{AB} = 26.0 ({\ge}3{\sigma},\;2'.0 aperture)$ using i' - z' > 1.5 color cut. This sample alone is likely to be contaminated by M/L/T dwarfs, low-z elliptical galaxies, and z ${\~}$ 6 quasars. To eliminate these interlopers, we estimated their numbers using an exponential disk star count model, catalogs of old ellipticals in the SXDS and other field, and a z${\~}$6 quasar luminosity function. The finally derived surface density of z ${\~}$ 6 LBGs was 165 $mag^{-1}\;deg^{-2}$ down to $z_{AB}$ = 26.0 and shows good agreement with previous results from the narrower field survey of HST GOODS.

The Infrared Medium-deep Survey. VI. Discovery of Faint Quasars at z ~ 5 with a Medium-band-based Approach

  • Kim, Yongjung;Im, Myungshin;Jeon, Yiseul;Kim, Minjin;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.37.1-37.1
    • /
    • 2019
  • The faint quasars with M1450 > -24 mag are known to hold the key to the determination of the ultraviolet emissivity for the cosmic reionization. But only a few have been identified so far because of the limitations on the survey data. Here we present the first results of the z ~ 5 faint quasar survey with the Infrared Medium-deep Survey (IMS), which covers ${\sim}100deg^2$ areas in J band to the depths of $J_{AB}$ ~ 23 mag. To improve selection methods, the medium-band follow-up imaging has been carried out using the SED camera for QUasars in Early uNiverse (SQUEAN) on the Otto Struve 2.1 m Telescope. The optical spectra of the candidates were obtained with 8 m class telescopes. We newly discovered 10 quasars with -25 < $M_{1450}$ < -23 at z ~ 5, among which three have been missed in a previous survey using the same optical data over the same area, implying the necessity for improvements in high-redshift faint quasar selection. We derived photometric redshifts from the medium-band data and found that they have high accuracies of ${\langle}{\mid}{\Delta}z{\mid}/(1+z){\rangle}=0.016$. The medium-band-based approach allows us to rule out many of the interlopers that contaminate ${\geq}20%$ of the broadband-selected quasar candidates. These results suggest that the medium-band-based approach is a powerful way to identify z ~ 5 quasars and measure their redshifts at high accuracy (1%-2%). It is also a cost-effective way to understand the contribution of quasars to the cosmic reionization history.

  • PDF