
2168     Bull. Korean Chem. Soc. 2012, Vol. 33, No. 7 Chun-Woo Lee

http://dx.doi.org/10.5012/bkcs.2012.33.7.2168

Relations between Resonance Structures in Photoionization Spectra in 

Three-Channel-Systems Studied by Multichannel Quantum Defect Theory

Chun-Woo Lee

Department of Chemistry, Ajou University, Suwon 443-749, Korea. E-mail: clee@ajou.ac.kr

Received March 2, 2012, Accepted March 26, 2012

Relations between fitted parameters for photoionization spectra both below and above the thresholds in the

systems involving 3 channels are obtained using phase-shifted version of the multichannel quantum-defect

theory. Analytical continuation of the photoionization cross sections in the form of  is

examined using several representations. 
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Introduction

Threshold phenomena have drawn enormous attention,1-3

since the energy dependence of the cross section near the

threshold was first studied by Wigner.4 Wigner demonstrated

that energy dependence in the neighborhood of the threshold

remains the same, apart from a constant, regardless of the

specifics of reaction or reaction products as long as the long-

range interaction of the product particles is the same.

Because of such a generality, threshold phenomena have

been of interest in many areas of physics and chemistry.1,2,5-7

Since slow-moving near-threshold particles spend a long-

time under the influence of any long-range potentials as they

are departing, it is those potentials rather than any shorter-

range ones that govern the threshold behaviors. 

Wigner obtained the threshold laws for the attractive and

repulsive Coulomb potentials and no long-range interaction.

In the case of no long-range interaction, cross sections were

determined only by the lowest angular momentum quantum

number allowed as  and were beautifully

demonstrated in the photo-detachment spectra of anions.8

For the attractive Coulomb potential, the cross section

remains finite at the thresholds for all angular momentum

quantum numbers as routinely observed in photoionization

spectra of neutral species.9-11 The effects of long-range

potentials other than Coulomb and centrifugal ones, like a

polarization potential r−3 and r−4 on the threshold laws are so

diverse and have a number of interesting aspects to be

summarized in a few sentences. For further details and

additional topics such as N-body threshold laws, please refer

to Refs. [1,11,12].

Threshold behaviors are also intensely studied in the

multichannel quantum defect theory (MQDT) in order to

treat the photo-absorption and photoionization spectra on an

equal footing.10,11 Such studies were mostly concentrated on

the analytical continuity of base functions across the

thresholds. The fact that the photoionization cross sections

below the threshold averaged over resonances are equal to

those of the total photoionization spectra just above the

threshold, was repeatedly derived in the past10,13 in the

context of photoionization for the simple one-open-one-

closed channel system except for the Dubau and Seaton's

derivation given in Ref. [14], in which the authors suggested

that general treatment can be given using the contracted

matrix method. This kind of analytical continuation of the

cross section below the threshold averaged over resonances

to the one above the threshold is known as the Gailitis

theorem.15 Although studied extensively, there remain several

interesting aspects in the analytical continuation across the

threshold. 

For the concreteness, let us restrict the system to the

photoionization of the system involving 3 non-degenerate

channels with the thresholds energies Ii satisfying .

Let us call the corresponding thresholds the first, second

and third thresholds, respectively. Let us also use the terms,

limit interval 1, 2, 3, and 4 as shown in Figure 1. Limit

interval 1 belongs to the photo-absorption regime. In limit

interval 2, if the effect of an interloper dominates the spectra,

the formalism developed by Connerade,16 Cooke and

Cromer17 and Ueda18 may be used to analyze the spectra. In

limit interval 3, Beutler-Fano formula is usually used to fit

the observed spectra. Table 1 shows resonance-resolved

cross-section formulas and quantum-defect theory (QDT)

parameters used to fit experimental data in all the limit

intervals. Detailed description will be given in the following

sections. 

In limit interval 3, the system involves one closed and 2

σbelow〈 〉ν
below

σabove=

σ E 2l 1+( )/2∝

I1 I2 I3< <

Figure 1. The three-channel-system with ionization energies
ordered as I1 < I2 < I3. Ranges of energy divided by Ii are termed as
limit intervals. 
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open channels. The presence of more than one open channel

leads to changes in the resonance frame from that of the

limit interval 2. This specific problem was extensively

studied in Ref. [19] (hereafter referred as LK) mostly using

the incoming wave channel basis functions. For the total

cross sections, the use of incoming waves is inconvenient

because of the presence of complex numbers. Most of the

formulas in LK were thus re-derived in terms of standing-

wave channel basis functions. Because of the change in the

resonance eigenframes for limit intervals 2 and 3, caution is

needed in relating QDT parameters obtained from experimental

data in fitting in different limit intervals. To obtain the

relations between resonance structures in photoionization

spectra in three-channel-systems is one of the main subjects

of the present study. The relation between the spectral

shapes of the autoionizing Rydberg series 3 below and above

the second ionization limit, in particular, motivated this

study. Channel 3 usually acts as an interloper to the auto-

ionizing Rydberg series 2 in the second limit since, the line

widths of interloper series 3 are much broader than those of

the perturbed series 2 because of the normal decrease in the

spectral width of Rydberg series as n−3. Interloper series thus

auto-ionizes much faster than the perturbed series and is thus

hardly affected by series 2. Because of this, Rydberg series 3

is well defined in limit interval 2 and may be expected to be

continued without much of a change to the same series in

limit interval 3. On the other hand, previous study makes it

clear that the line profile parameter is not an intrinsic

property of the series, but is determined by the resonance

structure of the system.20,21 Since resonance structures or

eigenframes are different both below and above threshold 2,

it is expected that the line profile parameter also undergoes a

change both below and above the second threshold. The

relation between the line profile parameters of series 3 below

and above the threshold of perturbed series is therefore

worth pursuing. Since this problem turns out to be in close

relation to the analytical continuation of the cross section,

the research carried out on that subject will be presented.

With respect to the present research work, Dubau and

Seaton’s contracted matrix method was useful and will be

presented finally.

Cross section Formula for the Perturbed Autoionizing

Series by an Interloper. If only one open channel is involved

in the ionizing process by photon, the photoionization cross

section can be described in terms of the transition dipole

moment matrix D by a single term, 

where, T denotes the transition dipole operator;  is the

initial state wavefunction; Ψ  is the photoionizing state, the

constant K is given by (4π2αω/3) with the fine-structure

constant α and the photon energy . Since, multichannel

quantum defect theory (MQDT) is known to be the most

powerful method for obtaining Ψ, let us briefly describe the

MQDT description of Ψ.

If many channels are involved in the autoionization, the

photo-ionizing wavefunction Ψ can be expanded in terms of

the standing-wave channel basis functions  as 

(1)

where, index 1 denotes the open channel and Q denotes the

set of closed channels; Zi are the expansion coefficients;

cosδ and  are needed to make Ψ energy

normalized and will be defined below. For the range of

ionization coordinate R larger than some value R0, channels

are decoupled and the motion along R in each decoupled

channel is governed by the second-order differential equations

whose solutions are given by the linear combinations of the

regular and irregular base pair, say fj(R) and gj(R) for the j-th

channel belonging to the threshold of ionization energy Ij.

Channel basis functions Ψi at energy E can thus be written

as;

, (R > R0), (2)

where,  are the wavefunctions composed of the ion

core and the angular and spin part of the outer electron in the

j-th channel and the coefficients Kji are called reactance

matrix and describe the extent of the coupling from other

K D
2

K Ψ T i( ) 2≡( )
i)

hω

Ψi

Ψ = Ψ1cosδ +  
i Q∈
∑ ΨiZi cosπ νi μi+( )

cosπ νi μi+( )

Ψi =  
j 1=

3

∑ Φj ω( ) fj R( )δji gj R( )Kji–[ ]

Φj ω( )

Table 1. Resonance-resolved cross-section formulas, QDT parameters used to fit experimental data and analytical continuation in 4 limit
intervals

Limit interval 1 Limit interval 2 Limit interval 3 Limit interval 4

Photoionization

cross section

σI σII σIII σIV

Resonance-

Structure

resolved formula

Discrete 

spectrum

No

resonance

QDT

parameters

I1, I2, I3

μ1(= 0), μ2, μ3

D1, D2, D3

I1, I2, I3

μc = μ3

Dr1, Dr2, Dr3

I3

ξr
Dr1, Dr2, Dr3

I1, I2, I3

Analytical continuation

σ0

ε3 q3+( )2

ε3
2
 + 1

--------------------
ε2eff q2eff+( )2

ε2eff
2

 + 1
----------------------------- σr1

ε̃r q̃r+( )
2

ε̃r

2
 + 1

------------------ + σr2

D 1 K
2

+( )
1–
D

T

K11′ K12′ K13′
K12′ K22′ K23′
K13′ K23′ K33′⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

D1′, D2′, D3′

0 K12 K13

K12 0 K23

K13 K23 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ 0 0ξr

0 0 0
ξr0 0⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

σI〈 〉
ν1

 = σII σII〈 〉
ν2

 = σIII σIII〈 〉
ν3

 = σIV
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channels.

The expansion coefficients in (1) can be obtained from the

boundary condition that Ψ remains finite at :11

, (3)

where, νj is the effective quantum number defined by E = Ij

− Ryd/ ; cosδ is related to the physical reactance matrix

defined by  as 

for the one open-channel system. In the phase-shifted

MQDT, the phases of fj and gj are shifted by  as already

implemented in (1) and (3) to make the diagonal elements or

diagonal sub-matrix of K zero.22 For the 3-channel system, 

(4)

where, o and c label open and closed channels, respectively,

In (4), index 1 is for the open channel and 2 and 3 for closed

ones in limit interval 2 while indices 1 and 2 are for open

channels and index 3 for closed ones in limit interval 3 (see

Fig. 1). The same reactance matrix (4) will be used for all

limit intervals in order to treat them on the same basis.

Otherwise, K oo could have been made to zero matrix in limit

interval 3. With (1) and (3), the transition dipole moment can

be written in matrix form as;

(5)

where, Dc denotes  and Do is similarly defined.

Formulas for the photoionization cross sections can be

obtained by substituting (5) with reactance matrices given

by (4) into . Although phase renormalization in

MQDT was introduced to transparently exhibit resonance

structures and was successful for the one-open-one-closed-

channel system, it is only the necessary condition not

sufficient enough to identify the resonance structures. 

For the systems involving 1 open and 2 closed channels,

resonance-structures-resolved photoionization cross-sections in

the limit interval 2 are obtained by Ueda18 as follows;

(6)

(For the resonance-resolvability of the form (6), see

Appendix A of Ref. [23].) The sub-index II denotes that it is

the cross-section at limit interval 2. The first Beutler-Fano

term on the right-hand side of (6) is the autoionization cross-

section of the interloper series alone. It serves as an envelope

to the second Beutler-Fano term from Rydberg series 2. The

line profile index  for the lines of the Rydberg series 2

perturbed by an interloper series 3 is given by23;

(7)

The reduced energy is defined as  (i =

2, 3) with βi denoting .  and  corresponding to

the reduced width  and the reduced energy ε2

perturbed by an interloper, respectively, are given by:

(8)

where, k23 denotes .

Cross Section Formulas in Limit Interval 3 in Terms of

QDT Parameters in Limit Interval 2. Now consider cross

section formulas in limit interval 3 in terms of QDT

parameters in limit interval 2. In limit interval 3, two

channels are open and one channel is closed. In this case, it

is known that the photoionization cross section can be

expressed as,19

(9)

where, sub-index III indicates limit interval 3; r in the sub-

index will be used to denote the representation in which σIII

takes the form of (9). This representation will be called r-

representation; Dr1, Dr2 and Dr3 are transition dipole

moments into channels 1, 2 and 3 in the r-representation; the

line profile index qr denotes  with the fitting

parameter ξr related to the reduced spectral width Wr as

; the fitting parameter μc denotes the phase shift and

is used to define εr as . In this limit interval,

experimental data are routinely fitted to the form  (9) and are

represented with energy-insensitive QDT parameters ξr, I3, μc

and Dri (i = 1, 2, 3).24 On the other hand, different QDT

parameters K12, K13 and K23, Ii, μi (i = 2, 3) and Di (i = 1, 2, 3)

are used to fit the experimental data in limit interval 2.18,25

(Different fitting procedures to experimental data have also

been used. If short-range eigenchannels are available at least

approximately, the procedure devised by Lu and Lee

provides the powerful systematic approach.26-28 Molecular

systems belong to such a case, but additional steps are

needed. The procedure devised by Jungen has been the

primarily chosen approach in this case.29-31) Obviously, we

cannot equate Dri with Di. It is thus desirable to express the

QDT parameters in limit interval 3 in terms of the QDT

parameters in limit interval 2. Let us tackle this problem by

using the theory developed in LK.19

Since it is hard to directly obtain the relations between two

sets of QDT parameters, LK utilized the intermediate

representation, called the tilde representation, which is

specified only by two conditions while more conditions are

needed to specify the r-representation that yields (9). Two

conditions are minimal conditions by which the sum of

eigenphases of the physical reactance matrix K satisfies the

simplest resonance behavior given by;

R ∞→
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cc

+( )
1–
K

co[ ]j cosδ–=

ν j
2

K K
oo

K
oc

tanβ K
cc

+( )
1–
K

co
–= 1 K

2
+( )

1– /2

πμj

K
K

oo
K

oc

K
co

K
cc

⎝ ⎠
⎜ ⎟
⎛ ⎞ 0 K12 K13

K12 0 K23

K13 K23 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

= =

D D
o

D
c

tanβ K
cc

+( )
1–
K

co
–[ ]cosδ=

Ψc
T Ψi( )

K D
2

σII KD1
2 ε3 q3+( )2

ε 3
2

1+
---------------------

ε2eff q2eff+( )2

ε 2eff
2

1+
-----------------------------=

q2eff

q2eff

q2ε 3
2

1 q3k23+( )ε3– k23 q3– q2+ +

ε3 k23–( ) ε3 q3+( )
--------------------------------------------------------------------------=

εi tan βi πμi+( )/K1i
2

=

πνi W2eff ε2eff

W2 K12
2≡( )

W2eff W2

ε3 k23–( )2

ε 3
2

1+
----------------------=

ε2eff
W2

W2eff

----------- ε2

ε3 1 k23
2

–( ) 2k23–

ε 3
2

1+
-------------------------------------+=

K23/ K12K13( )

σIII K Dr1
2 tan β3 πμc+( )/ξr

2
q

r
+( )

2

1 tan
2
β̃/ξ r

4
+

------------------------------------------------------ Dr2
2

+=

      K= Dr1
2 εr qr+( )2

εr
2

1+
------------------- Dr2

2
+

Dr3/ ξr1Dr1( )–

Wr ξ r
2

=

tan β3 πμc+( )/Wr



Relations between Resonance Structures Photoionization Spectra  Bull. Korean Chem. Soc. 2012, Vol. 33, No. 7     2171

(10)

where,  denotes the phase shifted  by πμc, i.e.,

. The parameter with tilde signifies that it is

the parameter in the tilde representation. From the general

relation  for the sum

of eigen-phases, two conditions are obtained as 

and  where  are the phases of eigenvalues

 of Koo and κcc is defined by .

The former condition removes phase shifts from background

scattering in open channels and the latter one removes the

phase shift from background scattering in the closed channel

at the intermediate range in which the closed-ness of

channels is not determined yet (see Appendix A of Ref. [32]

for the latter type of phase shift). The phase shifts due to the

avoided cross interaction are removed by considering the

sum of phase shifts.33 This means that  in (10) is

equal to the resonance eigenphase  whereby the reduced

resonance energy  in (9) can be defined by .

The phase shifts  and  that make two conditions

satisfied are given by;

(11)

where, super-index o denotes channel indices 1 and 2 and c

denotes 3 in limit interval 3. 

To obtain the remaining QDT parameters  (i = 1, 2, 3)

and , resonance eigenframe should be found. This

amounts to finding the particular type of linear combinations

of open channels which can interact with the closed channels

and the other combinations orthogonal to it which cannot

interact with the closed channels, as first pointed out by Fano

and Cooper.34 According to LK, procedures for finding the

resonance eigenframe from the tilde representation can be

diagrammatically represented as follows19;

(12)

where, θ0 denotes ;  denotes tan−1

; θr is given by tan−1

; Uoo denotes an orthogonal transformation

whereby Koo is transformed to (Uoo)TKooUoo, Koc to (Uoo)TKoc

and Kco to K coUoo.

The procedure (12) can be visualized by considering a

vector space whose constituent vectors are phase shift

matrices Δ defined by . The vector space

formed from the set of matrices or operators is called the

Liouville space.35,36 For the two open-channel-system, phase

shift matrices Δ are 2-by-2 matrices and thus can be spanned

by 4 basis vectors 1, σx, σy and σz orthogonal to each other in

the sense that the trace of their product is zero.35 But for the

visualization of diagram (12), 3-dimensional Liouville space

spanned by Pauli matrices σi (i = x, y, z) is enough since the

isotropic part of Δ is already separated out into (10) thus

leaving only the anisotropic part satisfying tr(Δ) = 0. Let Δ

denote the pure anisotropic phase shift matrix so that trΔ = 0.

Then it can be written as . The vector n is real since

scattering matrix is unitary so that phase shift matrix Δ is

Hermitian. It is called a polarization vector, which plays the

role of a quantization axis for the coordinate system, and can

thus be used to represent the coordinate system. For the

physical scattering matrix, n is restricted to lying on the xz

plane. Let us prove this. A scattering matrix or its phase-shift

matrix is symmetric because of the time-reversal symmetry.

This means that the anti-symmetric σy cannot appear in the

representation  of Δ. Such a requirement is met only

when the y-component of n is zero, thus n is restricted to lying

on the xz plane. The xz plane in Liouville space can thus be

called the physical plane. LK stated that the y component of the

quantization axis  for the resonance eigenframe is not zero.

The  is given by . This

does not contradict the fact that physical Δ cannot have a y-

component since the resonance eigenchannel itself is not

directly measured. It is indirectly observed only through

 on the physical plane. 

Figure 2 shows the process of finding the resonance

eigenframe from the reference frame of the tilde representation

in the limit interval 3. The tilde representation is represented

tan δ
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∑ ξ r
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Figure 2. Vectors , ,  representing quantization axes of
coordinate frames for tilde, double-bar, r-representations in Liouville
space. Please refer to the text for the descriptions of parameters. 
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by  in Liouville space.36 The first step is the orthogonal

transformation  that changes the reference

frame to the background eigenframe represented by  by

rotation about the y axis by . The second step is the phase

renormalization of regular and irregular base-pair pertaining

to channels 1 and 2 by  and , respectively. The

geometrical transformation corresponding to this step is to

remove the background part pertaining to  by rotation of

the coordinate system about the z axis by . The third

step is to make this  the z axis. The coordinate frame

obtained finally is the resonance eigenframe.

The transformation relations between the transition dipole

moment elements in the tilde- and r-representations can then be

obtained by following the procedures shown diagrammatically

in (12):

(13)

Or in terms of the geometrical parameters of Liouville space

in Figure 2, they are given by

(14)

From (13) or (14), the line profile index qr defined by

  can be expressed in terms of the transition

dipole moment elements in the tilde representation;

(15)

or

(16)

Let us finally consider expressing the tilde quantities into

the untilde ones. The transformation relations between the

transition dipole moment elements in the tilde- and untilde-

representations are not uniquely given since the tilde

representation is defined with the zero condition of the sum

. There are an infinite number of ways of

making the sum zero. In the present study, two choices were

tried. One choice was to distribute the sum equally to all the

components and the other was to make all  but one 

zero, i.e., . The latter option was eventually

chosen. The relation between the matrix elements of K and K

in this choice is obtained as;

(17)

where, σi (i = z, x) are Pauli matrices. Similarly, the relation

between  and  is obtained as follows:

(18)

Eq. (15) with (17) and (18) enables us to calculate qr in

terms of un-tilde QDT parameters and thus our goal is

attained. 

Interestingly, the reduced width  enjoys a simple

relation with the elements of K as follows;

(19)

where, the formula for μc is given in (11) and W is defined

by  and explicitly given by .

The short-range reactance matrix in the final r-representation

in (12) is described by ξr alone as follows:

(20)

The form (20) indicates that only  between two open

channel basis functions  interacts with the closed

channel basis function . The channel basis functions

 pertaining to Kr corresponds to ‘a’ and ‘b’ states

of Fano, or effective continua of Cooke and Cromer. 

Changes in Resonance Eigenframe and Spectral Shape.

Let us consider the continuation problem of the photoionization

cross section formulas across the threshold of channel 2 in

Figure 1. Recalling that the dynamics in the interloper series

is hardly affected by the autoionizing series belonging to

lower ionization limit, it might be expected that the

interloper spectrum be continued across the threshold and

the perturbed autoionizing series now contributes only as a

background spectrum insensitive to energy. In order to

examine whether this expectation bears out from the

quantitative basis, let us consider the simple case of K23 = 0

in which, K12 and K13 are the only nonzero elements that can

bring about the change in the resonance eigenframe. 
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The case of K23 = 0

In this case, there is no need to use the intermediate tilde

representation since  = 0 and  = 0 conditions are

already satisfied so that K is equal to  from the outset. In

this case, the values  and  are given by  and ,

respectively, from their definitions given below (12). The

reason why the value of  is  comes from the zeros of

the diagonal elements of  so that the polarization vector

for  points to x direction since, . Sub-

sequently, taking  transforms  to .

Such a simple explanation cannot be given at this moment

for the reason why the value of θr is . 

Substituting  and  into (14) or

 into (13),  (i =

1, 2) is obtained. It means that the effective continuum

wavefunctions  are proportional to the un-tilde

ones as Ψri = Ψi cos( /2) = Ψi /  (i = 1, 2). Note

that 1 + (Koo)2 is equal to 1 + , indicating that the factor

cos( /2) or  adjusts the change in normalization

caused by the newly added open channel 2 so as to make Ψri

energy-normalized within the subspace composed of open

channels. However, this newly added open channel does not

affect the orientation of the background eigenframe. The

relations between resonance parameters qr and Wr in (9) in

the limit interval 3 and those in the limit interval 2 are

subsequently obtained as;

qr0 = q3 + (q3 − q2)W2

Wr0 = W3/(1 + W2) (when K23 = 0) (21)

where, 0 is attached to the sub-indices to stand for K23 = 0

and the notation W2 is preferred to  if the relevant energy

range belongs to limit interval 2. The second equation of

(21) tells us that spectral reduced widths are also different by

factor of (1 + W2)
−1. Since the spectral minimum (maximum)

of the Beutler-Fano term takes place at ε = −q (1/q), the

spectral minimum of the autoionizing spectrum (9) occurs at

εr = −qr (1/qr) and that of the interloper spectrum σ0(ε3 + q3)
2/

(  + 1) takes place at ε3 = −q3 (1/q3). Since qr differs from

q3 by (q3 − q2)W2 according to the first equation of (21), the

minima (maxima) of both spectra do not coincide in general.

Let us consider the effect of change in resonance frames

on the optimum values of cross sections. The minimum of

cross sections is zero in limit interval 2. Cross sections are

not zero at the minimum in limit interval 3, however,

because of the contribution from the background scattering.

From (9), the background term given by  or /

(1+ ) is contributed from the newly added open channel

with the correction factor 1+  for the change in normali-

zation due to the newly added open channel. Let us consider

the maximum value. Using the fact that the maximum

value of Beutler-Fano term (ε + q)2/(ε2 + 1) is given by

q2 + 1 at ε = 1/q, the maximum value of the interloper

spectrum /  is obtained as ( +1)

= K( ). For the autoionizing spectrum (9), the

maximum is given by σIII,max = K . Sub-

stituting  (i = 1, 2) and qr0 = −D3/(ξrDr1)

+ tan (D2/D1) into σIII,max, we obtain;

(22)

Note that sin  is given by 2K12/(1+ ). If there is no

channel coupling between the existing open channel and the

newly added open channel so that K12 = 0, then the

interference term between channels 2 and 3 becomes zero

and σIII,max becomes , which is

equal to the sum of the maximum of interloper spectrum and

the background one contributed from the newly added open

channel 2 except for the normalization-adjusting factor

 multiplying  term. 

The case of 

Let us now lift the restriction so that K23 is not zero in

general. Since channel coupling between channels 2 and 3 is

no longer zero, conversion of channel 2 from closed to open

channel when the threshold is crossed now reduces the

dimension of the space consisting of closed channels. This

change raises a new problem of positioning of the resonance

to the origin of the eigenframe. The phase shifts given in

(11) reposition the resonance to the origin of the eigenframe

so that the simplest resonance relation (10) holds again.

Then the effect of newly added open channel on the existing

open channel can be dealt with in this resonance centered

tilde representation. In this case, the picture obtained in the

case of K23 = 0 may be applied with only minor modi-

fications. Corresponding formula for (22) is obtained as

follows;
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Figure 3. The solid smooth curve on the left-hand side of the
second threshold is the photoionization cross section averaged over
one unit interval of ν2 and is analytically continued to the cross
section above the threshold so that . The broken curve
is the autoionizing spectrum σ0(ε3 + q3)

2/(  + 1) of interloper
series 3 when only the channels 1 and 3 are included. It is usually
used as an envelope to the perturbed autoionizing series 2 below
the threshold. Nevertheless, it is not continued to the cross section
above the threshold. Nonzero parameters used to draw the plot is as
follows: I2 = 3500 cm−1, I3 = 9600 cm−1, K12 = 0.02π, K13 = 0.3π,
K23 = 0.1π, D1  = 1 a.u., D2 = 100 a.u., D3 = 150 a.u..
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(23)

The difference between (23) and (22) arises because the

value of θr is no more given as a right angle so that, instead

of a single term of Dri, their combinations appear. In addi-

tion, a modification to the normalization factor is needed for

the case of  coming from additional coupling term

between the newly added open channel and the existing one.

That is the product between two diagonal elements of 

given by . Because of this factor, sin  is

modified to .

Analytical Continuation of Photoionization Cross Sec-

tion at Thresholds. In the previous section, we examined

the continuation of an interloper spectrum as the threshold is

crossed. Actually, similar kind of problem of analytical con-

tinuation was treated by Fonda and Newton37 and Gailitis.15

They showed that the average values of the total scattering

cross sections below threshold are analytically continued to

the values above threshold in the Coulomb field. Such a

continuity is known as Gailitis theorem and was proven to

hold for the reactions X (a, bf) Yf (f=1,…,d) near the

threshold of a new reaction X (a, bt) Yt. The theorem is

expected to hold for the photoionization cross section since

photoionization can be viewed as belonging to such a type of

reaction if light is treated as a collection of photon.

Nevertheless, direct confirmation of Gailitis theorem in the

context of photoionization was repeated in the past10,13 since

it can be done directly with simple mathematics while the

derivation in Gailitis’s work15 relies on the results obtained

from a large number of preceding papers. But the direct

confirmation has been restricted to the system in which all

the channels are open above the threshold except for the one

by Dubau and Seaton.14,38 They proposed to use a contracted

scattering matrix to treat the effects due to higher thresholds.

Here, we will consider averaging the photoionization cross

section of autoionizing Rydberg series in the presence of an

interloper series, for which no papers doing direct integ-

ration has been found yet. For the calculation of the average

of the cross section (6) by direct integration, it may be more

convenient to express (6) into the form that Wintgen and

Friedlich have obtained,39

(24)

Let us change the integral variable from   to

 so that . Then taking

the upper half complex plane as a contour and then applying

the residue theorem to the simple poles at

(25)

we obtain;

(26)

where, qr0 is defined in (21) and 

f = 

(27)

Eq. (26) is numerically shown to be identical with (9), i.e.,

= σIII. Note that because of the averaging process, the

formula (26) does not go to zero once in every unit interval

of ν2. If only one open channel is involved, cross section

should be zero at least once in every unit interval. Since

 does not go to zero, it can be compatible with

= σIII since σIII does not go to zero because there are

two open channels in the limit interval 3. In contrast to the

simple form of σIII, the form of  is complicated. From

this, it can be argued that cross section formulas take the

simpler form when they are expressed in terms of the

resonance parameters. The simplicity may be derived from

that the resonance and background scatterings are funda-

mental processes having the simplest behaviors because of

their pure nature. Resonance parameters are likely the

parameters obtained from experimental data fitting. 

Let us consider the next analytical continuation for the

third threshold for the completeness. For the integration of

σIII of (9) over the unit interval of ν3, let us denote tanπ(ν3 +

μ3 + μc) as x. Then, εr = Wrx and πdν3 = dx/(1+x2). is

obtained as follows:

  (28)

This should be equal to  obtained directly

for the system with all the 3 channels open where D

denotes (D1 D2 D3) and K denotes (4). The equality is

difficult to show because of the complexity of the involved

formulas and only confirmed numerically. The formula

σ = D(1 + K2)−1DT becomes very complicated when it is

expanded in terms of MQDT parameters obtained by data

fitting in limit interval 2. In this limit interval, the formula

(28) is the simplest one if the QDT parameters obtained by

data fitting in the limit interval 3 are used. Once again, we

see that the representations suitable for one limit interval

may not be suitable in other limit intervals. 

Contracted Basis Sets for the Proof of Analytical

Continuity of a Cross Section. We have seen that it is very

difficult to prove directly = σIII without the help from

machine. Dubau and Seaton proposed to use a contracted
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base set to prove such an equality by eliminating the effects

of higher thresholds. With this contracted set, 3-channel

systems can be contracted into the 2-channel systems for

which the proof of the equality may be easily done. Let us

explore this possibility. 

In Seaton's contracted matrix method, effects of higher

thresholds are eliminated using a contracted matrix. All the

structures observed in a restricted range of lower energies

may then be accounted for using a small contracted matrix.

In the contracted matrix method, the boundary condition that

the coefficients of the exponentially rising terms in basis

functions for closed channels be zero is applied in two steps.

At first, it is applied to eliminate the channels of higher

thresholds. Let the set of channels of higher thresholds be

labeled as ‘b’ and the set of other channels be labeled as ‘a’.

Channels belonging to b are then eliminated in the channel

basis functions and reactance matrices using the same

method as used in eliminating closed channels:

(29)

For the present 2-closed-1-open-channel system, the

standing wavefunction Ψ3 pertaining to the higher threshold

corresponds toΨb and is contracted into the channel wave

functions Ψi (i = 1, 2) belonging to Ψa. From (4), we obtain;

(i = 1, 2) (30)

where, the super-index (c) stands for the contraction. The same

notational convention will be kept below for other quantities. In

limit interval 2, channel 2 is closed. By making zero of the coef-

ficient of the exponentially rising term, the physical wavefunc-

tion is obtained as;

(31)

where, the short-range contracted reactance matrix K(c) is

defined in (29) and the cosine term is obtained from the

physical reactance matrix K(c)(=tanδ (c)) as;

(32)

The square of the modulus of  is then

obtained as;

(33)

The average of  over the unit interval of ν2 can be

easily obtained as;

(34)

 = 

Similarly,  can be obtained from 

with , which yields the same formula as

(34), thus proving the relation = σIII. (Note that

 and ) Although the contracted base set is

convenient to prove the analytical continuation, the form of

the cross section derived from it is not the form used to fit

the experimental data. 

Results and Discussion

The MQDT is a powerful theory that describes the

complex spectra including energy regions both below and

above the threshold with a small number of parameters.

Usually the energy dependence of such parameters can be

ignored and excellent reproduction of the observed spectra is

obtained. If the energy dependence cannot be ignored, only

minor modifications of the parameters are enough to obtain

the excellent fit to the experimental data. Such an excellent

fit to spectra at both sides of a threshold is possible with a

single set of QDT parameters since QDT parameters re-

present the dynamics taking place at short-ranges, where

potential is so strong that minor energy variation can be

ignored and thus can be used at both sides. Thus, QDT

parameters obtained in one limit interval can simultaneously

be used to simulate the photoionization spectra in other limit

interval. Practically, however, if the spectra can be fitted by

Beutler-Fano function, that function is used to fit the spectra

instead of using MQDT. This situation takes place since it is

better to describe the spectra using the formulas expressed in

terms of resonance structures instead of raw MQDT para-

meters if the resonance structure of the system is known.

Superiority of using resonance parameters lies in that re-

sonance and background scatterings are fundamental pro-

cesses having the simplest behaviors because of their pure

nature. In contrast to the raw short-range QDT parameters,

resonance parameters are different for different limit intervals

because of the different resonance eigenframes for different

limit intervals. This raises the problem of finding the relations

between different resonance eigenframes for different limit

intervals. In the present study, 3-channel systems are chosen

to study this problem. In this case, only two limit intervals 2

and 3 in table 1 have resonance eigenframes and need to be

considered.

Conversion of channel 2 from closed to open channel,

when the second threshold is crossed now reduces the

dimension of the space consisting of closed channels.

Because of this change, we have new problem of relocating

the resonance position to the origin of the eigenframe by

shifting the phase shifts by πμ so that the simplest resonance

relation  holds again. Then the channel

coupling effect of newly added open channel on the existing
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open channel can be described in this resonance centered

representation. If there is no channel coupling between the

existing open channel and the newly added open channel,

the spectrum is equal to the sum of the interloper spectrum

and the background one due to the newly added open

channel 2 except for the normalization factor that enters due

to the newly added open channel. The newly added open

channel also cause change in the orientation of the resonance

eigenframe. Putting these effects into consideration, the

relations between different resonance eigenframes are

obtained.

The formula for the average  of autoionization cross-

section is also obtained in terms of the QDT parameters in

the limit interval 2 by integrating directly over the resonance

structures in the presence of an interloper series that

converge to the second ionization threshold. We confirm that

the formula satisfies Gailitis' theorem = σIII. We hope

this formula provides experimentalists an additional tool to

analyze the autoionization spectra besides Ueda's one, in

particular. The complexity of the formula of  when

expressed in terms of QDT parameters in limit interval 2

also makes it clearer that cross section formulas take the

simplest form when they are expressed in the resonance

eigenframes so that resonance structures are clearly revealed.

We also employed Dubau and Seaton's contracted matrix

method to analytically prove = σIII. Although the con-

tracted matrix method is convenient to prove the analytical

continuation, the form of the cross section derived from it is

found not to be suitable to fit the experimental data.

However, the method has many advantages and interesting

aspects. We expect it to play a crucial role for further

development of MQDT in the near future.

Using the theory developed in this study, it may be worth

while to analyze the patterns of changes in resonance

eigenframes in real systems. Unfortunately, there seems to

be no study of the relations between resonance dynamics

above and below thresholds in photoionization of the real

systems except for the analytical continuation of cross

sections. We hope the present study spurs research in this

direction.

Final comment is that since energy range including several

thresholds is considered in the present study, the energy

dependence of QDT parameters may not be ignored. Thus,

caution is needed when applying the formulas obtained in

the present study. In the neighborhood of thresholds,

analytically continued formulas will have no problem but far

from the thresholds,  may not be used

without including the energy dependence of QDT para-

meters. How far from the threshold the analytically continu-

ed formulas can be applied and how the formulas are

modified when the energy dependence of QDT parameters

are included are left as a future research topic. 
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