• Title/Summary/Keyword: Interleaved boost converter

Search Result 109, Processing Time 0.028 seconds

A Novel Current Sharing Technique for Interleaved Boost Converter (Interleaved 부스트 컨버터의 새로운 전류 분배 기법)

  • Min, Byung-Sun;Park, Nam-Ju;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.165-173
    • /
    • 2007
  • This paper introduces a new current sharing technique to Interleaved Boost Converter (IBC) using carrier slope control. The IBC is able to boost the input voltage and operates at higher current levels and has various advantages over a single power module. However, how to balance the current each module is still important problem. To solve this problem, the proposed technique can distribute the power and load current equally based on master-slave current sharing method. Unlike a conventional approach, this technique can be extended even though the current stress of switching components at slave modules is significantly smaller than that of the master module. The simulation and the experimental results are presented to show the validity.

DCM Frequency Control Algorithm for Multi-Phase DC-DC Boost Converters for Input Current Ripple Reduction

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2307-2314
    • /
    • 2015
  • In this paper, a discontinuous conduction mode (DCM) frequency control algorithm is proposed to reduce the input current ripple of a multi-phase interleaved boost converter. Unlike conventional variable duty and constant frequency control, the proposed algorithm controls the switching frequency to regulate the output voltage. By fixing the duty ratio at 1/N in the N-phase interleaved boost converter, the input current ripple can be minimized by ripple cancellation. Furthermore, the negative effects of the diode reverse recovery current are eliminated because of the DCM characteristic. A frequency controller is designed to employ the proposed algorithm considering the magnetic permeability change. The proposed algorithm is analyzed in the frequency domain and verified by a 600 W three-phase boost converter prototype that achieved 57% ripple current reduction.

DSP Based Control of Interleaved Boost Converter

  • Sudhakarababu C.;Veerachary Mummadi
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.180-189
    • /
    • 2005
  • In this paper a DSP based control scheme for the interleaved boost converter is presented. The mathematical model for the interleaved boost converter operating in a continuous inductor current mode is developed. A state-space averaging technique is used for modeling the converter system. A fixed frequency sliding mode controller is designed to ensure current distribution between the two converter modules and to achieve the load voltage regulation simultaneously. Necessary and sufficient conditions, using variable structure theory, are derived for the sliding mode to exist. The range of sliding mode controller coefficients is also determined. The designed controller capability, load distribution among the individual boost cells and load voltage regulation against source and load disturbances, are demonstrated through PSIM simulation results. A real-time controller based on ADMC401 DSP is developed. Experimental results are provided to validate the proposed control scheme.

Small Signal Analysis and Controller Design for Interleaved DC-DC Dual Boost Converter in Discontinuous Current Mode (불연속전류모드에서 interleaved DC-DC dual boost 컨버터용 소 신호 해석 및 제어기 설계)

  • Park Joo Moon;Park Sang Eun;Kuk Jung Hyun;Hwang Young Seong;Kim Young Roc;Seong Se Jin
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.530-533
    • /
    • 2001
  • Interleaved Dual Boost(IDB) converter can reduce current ripple, switching loss and harmonics without filter in input power line. Moreover, this improve power factor. In this paper, we will use the state average methode and small signal analysis at the Interleaved dual boost converter. 4-type controllers were designed by using control transfer function. The result of these controller simulations is analyzed and proposed a proper controller at IDB

  • PDF

A Study on the Two Phase with interleaved Boost Converter (부스트 컨버터의 2상 2중화에 관한 연구)

  • Sin, C.J.;Han, K.H.;Son, Y.I.;Jeong, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.139-141
    • /
    • 2008
  • In this paper, the authors study the boost converter as a DC-DC converter like a Power supply and describe the investigation result about the two phase with interleaved boost converter which has the same effect that the switching frequency of the solid-state-switch is two times. As a result, the ripple of the input current and output current is better improved.

  • PDF

Input Current Ripple Reduction Algorithm for Interleaved DC-DC Converter (다상 DC-DC 컨버터의 입력 전류 리플 저감 제어 알고리즘)

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.220-226
    • /
    • 2014
  • Input current ripple and harmonic components of the power device are main causes of electromagnetic interference (EMI). Although the discontinuous conduction mode (DCM) operation can reduce harmonic components of the power device by reducing reverse recovery current of diode and turn-off voltage spikes of the switch, input current ripple increases due to high peak to peak inductor current. Therefore, in this paper, frequency control algorithm is proposed to reduce the input current ripple of DCM operated interleaved boost converter. In the proposed algorithm, duty ratio is fixed either 0.33 or 0.67 to minimize the input current ripple and the switching frequency is controlled according to operating conditions. 600 W 3-phase interleaved boost converter prototype system is built to verify proposed algorithm.

Multi-Phase Interleaved ZVT Boost Converter With a Single Soft-Switching Cell (단일 소프트 스위칭 셀을 가진 다상 Interleaved ZVT Boost 컨버터)

  • Lee, Joo-Seung;Hwang, Yun-Seong;Kang, Sung-Hyun;Kwon, Man-Jae;Jang, Eunsu;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.247-255
    • /
    • 2022
  • This paper proposes a multiphase interleaved zero-voltage-transition boost converter with a single soft-switching cell for high-voltage DC-DC converter (HDC) of fuel cell systems. The proposed single soft-switching cell structure can reduce the system volume by minimizing the passive and active elements added even in the multiphase-interleaved structure. To analyze the feasibility of the proposed structure, this paper mathematically analyzes the operation modes of the converter with the proposed single soft-switching cell structure and presents guidelines for design and considerations. In addition, the feasibility of the 210[kW] HDC was confirmed through PSIM simulation, and the system volume reduction of up to 10.48% was confirmed as a result of the 5[kW] HDC test-bed experiment considering the fuel cell system. Through this, the validity of the proposed structure was verified.

A Study on the Characteristics of Multi-Phase Interleaved Boost Converter Operating in Boundary Conduction Mode (임계 전류모드에서의 다상 교호 승압컨버터의 특성 연구)

  • Lee, Jae-Sam;Bae, Cheol-Su;Son, Ho-In;Moon, Seok-Jo;Huh, Dong-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.257-262
    • /
    • 2008
  • This paper studies the operational characteristics of Multi-Phase Interleaved Boost converter operating in Boundary Conduction Mode. The generalized transfer functions of interest are derived from the full-order averaged model approach and then the steady-state and dynamic characteristics are analyzed. The theoretical results are verified through an experimental prototype of the 800W boost PFC converter for 60inch PDP power module.

Implementation and Evaluation of Interleaved Boundary Conduction Mode Boost PFC Converter with Wide Band-Gap Switching Devices

  • Jang, Jinhaeng;Pidaparthy, Syam Kumar;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.985-996
    • /
    • 2018
  • The implementation and performance evaluation of an interleaved boundary conduction mode (BCM) boost power factor correction (PFC) converter is presented in this paper by employing three wide band-gap switching devices: a super junction silicon (Si) MOSFET, a silicon carbide (SiC) MOSFET and a gallium nitride (GaN) high electron mobility transistor (HEMT). The practical considerations for adopting wide band-gap switching devices to BCM boost PFC converters are also addressed. These considerations include the gate drive circuit design and the PCB layout technique for the reliable and efficient operation of a GaN HEMT. In this paper it will be shown that the GaN HEMT exhibits the superior switching characteristics and pronounces its merits at high-frequency operations. The efficiency improvement with the GaN HEMT and its application potentials for high power density/low profile BCM boost PFC converters are demonstrated.

Design and Implementation of a Control System for the Interleaved Boost PFC Converter in On-Board Battery Chargers (차량 탑재형 배터리 충전기의 인터리브드 부스트 PFC 컨버터 제어시스템 설계 및 구현)

  • Lee, Jun Hyok;Jung, Kwang-Soon;Lee, Kyung-Jung;Jung, Jae Yeop;Kim, Ho Kyung;Hong, Sung-Soo;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.843-850
    • /
    • 2016
  • In this paper, we propose a digital controller design process for the interleaved type of a boost PFC (Power Factor Correction) converter which can disperse the heat of the switching devices due to the interleaved topology. We establish a mathematical model of a boost PFC converter and propose a controller design method based on the root locus. The performance of the designed controller is verified by simulations. The measurement of the input voltage, inductor currents, and the converter output link voltage are needed for the control of the converter system which consists of a power unit and a control unit where a high-performance 32-bit microcontroller is used. The adjustment of A/D conversion timing is also needed to avoid high frequency noise generated when the switches on/off. It is illustrated by the real experiments that the designed control system with the properly adjusted ADC timing satisfies the given performance specifications of the interleaved boost PFC converter in the on-board slow battery charger.