• Title/Summary/Keyword: Interleaved DC-DC Converter

Search Result 143, Processing Time 0.028 seconds

옥외 LED 조명을 위한 넓은 출력 전력 범위을 갖는 인터리빙 방식의 단일 전력 Flyback AC-DC Converter

  • Mun, Sang-Cheol;Gu, Gwan-Bon;Mun, Geon-U
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.191-192
    • /
    • 2012
  • 옥외 LED 조명은 수 많은 응용 분야가 있고, 출력 전력 크기에 따라 전력단이 single-stage 와 two-stage 구조로 나뉜다. Single-stage 구조는 낮은 전력 LED 조명에 적합하지만, 60~70W 이상에서는 효율이 떨어지고 변압기의 크기가 커져서 적용하기가 힘들다. 반면에 two-stage 구조는 보통 큰 전력이 필요한 응용분야에 사용되지만, 낮은 부하에서 낮은 역율을 나타내므로 넓은 출력전력 범위를 갖는 분야에 사용되기 어렵다. 이 문제를 해결하기 위하여 본 논문은 pulse duty cycle, pulse frequency modulation 제어 방법을 갖는 interleaved single-stage flyback AC-DC converter 를 제안한다. 제안된 컨버터는 입력 전압이 낮고 부하가 큰 경우 높은 효율을 보이고, 입력 전압이 높고 부하가 아주 작은 경우에도 높은 역율과 낮은 전류 왜곡을 보인다. 그 결과 하나의 AC-DC 컨버터를 넓은 출력전력 범위를 갖는 LED 조명분야 적용시킬 수 있다. 제안된 컨버터의 타당성을 검증하기 위하여 81W prototype을 가지고 실험하였다.

  • PDF

Development of 100kW 4-Parallel Switch Interleaved DC/ C Converter (100kW급 4병렬 스위치 인터리브 DC/DC 컨버터 개발)

  • Park, Seong-Mi;Lim, Sang-Kil;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.377-378
    • /
    • 2017
  • 대용량 전력변환기는 가청주파수에 해당하는 낮은 주파수 스위칭 동작으로 전력변환기 구동 시 리액터 소음에 의한 공해를 유발하고 있다. 이러한 리액터 소음공해 제거하기위해 대용량 전력변환기의 높은 주파수 전압을 리액터에 인가할 수 있는 새로운 DC/DC 컨버터 토포로지를 제안한다. 본 논문에서 제안된 토포로지는 다수의 스위치를 병렬로 연결하여 스위치 인터리브 방식에 의한 높은 등가 스위칭 동작 구현이 가능하다. 따라서 제안된 스위치 인터리브 방식은 대용량 전력변환기의 리액터 소음을 제거할 수 있을 뿐만 아니라 리액터용 용량을 저감하여 전력변환기의 에너지 밀도 증대와 단가 감수 측면에서 큰 장점을 갖고 있다.

  • PDF

Two-Phase Hybrid Forward Convertor with Series-Parallel Auto-Regulated Transformer Windings and a Common Output Inductor

  • Wu, Xinke;Chen, Hui
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.757-765
    • /
    • 2013
  • For conventional interleaved two-phase forward converters with a common output inductor, the maximum duty cycle is 0.5, which limits the voltage range and increases the difficulty of the transformer's optimization. A new two-phase hybrid forward converter with series-parallel auto-regulated transformer windings is presented in this paper. With interleaved control signals for the two phases, the secondary windings of the transformers can work in series when the duty cycle is larger than 0.5, and they can work in parallel when duty cycle is lower than 0.5. Therefore, the maximum duty cycle is extended and the turns ratio of the transformer can be optimized. Duty cycle dependent auto-regulated windings result in the steady states of the converter being different in different duty cycle ranges (D>0.5 and D<0.5). Fortunately, the steady state gains of the proposed hybrid converter are identical at different duty cycle ranges, which means a stepless shift between two states. A prototype is built to verify the theoretical analysis. A conventional control loop is compatible for the whole input voltage range and load range thanks to the stepless shifting between the different duty cycle ranges.

Single Stage Three Level AC/DC Converter with Wide Output Voltage Control Range (넓은 출력 전압제어 특성을 갖는 단일전력단 3레벨 AC/DC 컨버터)

  • Marius, Takongmo;Heo, Y.C;Lee, J.C;Lee, U.K;Kim, E.S;Cook, Y.S
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.373-374
    • /
    • 2017
  • 최근 개발 및 출시되고 있는 전기자동차(EV) 충전시스템은 3상 AC전원을 입력받아 입력역률개선과 고효율 AC/DC변환을 위한 Interleaved PFC컨버터, Bridgeless PFC컨버터, 3-Level 비엔나정류기(VIENNEA Rectifier) 등의 Topology가 사용되고 있으며, 변환된 DC전압을 입력받아 배터리를 충전하기 위한 절연된 고주파 DC/DC컨버터로 LLC 공진컨버터, 3레벨 컨버터 등이 사용되어 사이즈저감 및 경량화를 꾀하고 있다. 본 논문은 기존 입력역률 개선을 위한 PFC 컨버터와 배터리 충전을 위한 절연형 DC/DC 컨버터 2단으로 구성되어진 충전시스템 대신에 사이즈저감 및 효율개선 그리고 넓은 범위의 출력전압제어(200Vdc~430Vdc)에 대응 할 수 있도록 '단일전력단 3레벨 하이브리드 AC/DC 컨버터'를 제안하였고, 2kW 시제품을 제작하여 실험을 통해 적용 가능성을 입증하였다.

  • PDF

ZVT Series Capacitor Interleaved Buck Converter with High Step-Down Conversion Ratio

  • Chen, Zhangyong;Chen, Yong;Jiang, Wei;Yan, Tiesheng
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.846-857
    • /
    • 2019
  • Voltage step-down converters are very popular in distributed power systems, voltage regular modules, electric vehicles, etc. However, a high step-down voltage ratio is required in many applications to prevent the traditional buck converter from operating at extreme duty cycles. In this paper, a series capacitor interleaved buck converter with a soft switching technique is proposed. The DC voltage ratio of the proposed converter is half that of the traditional buck converter and the voltage stress across the one main switch and the diodes is reduced. Moreover, by paralleling the series connected auxiliary switch and the auxiliary inductor with the main inductor, zero voltage transition (ZVT) of the main switches can be obtained without increasing the voltage or current stress of the main power switches. In addition, zero current turned-on and zero current switching (ZCS) of the auxiliary switches can be achieved. Furthermore, owing to the presence of the auxiliary inductor, the turned-off rate of the output diodes can be limited and the reverse-recovery switching losses of the diodes can be reduced. Thus, the efficiency of the proposed converter can be improved. The DC voltage gain ratio, soft switching conditions and a design guideline for the critical parameters are given in this paper. A loss analysis of the proposed converter is shown to demonstrate its advantages over traditional converter topologies. Finally, experimental results obtained from a 100V/10V prototype are presented to verify the analysis of the proposed converter.

A Ripple-free Input Current Interleaved Converter with Dual Coupled Inductors for High Step-up Applications

  • Hu, Xuefeng;Zhang, Meng;Li, Yongchao;Li, Linpeng;Wu, Guiyang
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.590-600
    • /
    • 2017
  • This paper presents a ripple-free input current modified interleaved boost converter for high step-up applications. By integrating dual coupled inductors and voltage multiplier techniques, the proposed converter can reach a high step-up gain without an extremely high turn-ON period. In addition, a very small auxiliary inductor employed in series to the input dc source makes the input current ripple theoretically decreased to zero, which simplifies the design of the electromagnetic interference (EMI) filter. In addition, the voltage stresses on the semiconductor devices of the proposed converter are efficiently reduced, which makes high performance MOSFETs with low voltage rated and low resistance $r_{DS}$(ON) available to reduce the cost and conduction loss. The operating principles and steady-state analyses of the proposed converter are introduced in detail. Finally, a prototype circuit rated at 400W with a 42-50V input voltage and a 400V output voltage is built and tested to verify the effectiveness of theoretical analysis. Experimental results show that an efficiency of 95.3% can be achieved.

A Study of Interleaved AC/DC Converter to Improved Power Factor and Current Ripple (역률과 전류 리플을 개선한 인터리브 AC/DC 컨버터에 관한 연구)

  • Seo, Sang-Hwa;Kim, Yong;Kwon, Soon-Do;Bae, Jin-Yong;Eom, Tae-Min
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.152-155
    • /
    • 2009
  • In high power application, PFC(Power Factor Correction) pre-regulators are generally required. PFC pre-regulators could achieve unity power factor, reduce line input current harmonics and utilize full line power. Interleaving PFC converters could reduce input ripple current, output capacitor ripple current and inductor size. With this closed loop interleaving method, both two phase converters are working at the boundary between continuous and discontinuous mode and accurate 180 degree phase shift is achieved. Implementation of this strategy could be easily integrated to the control chip. Finally, experimental results of a two-phase interleaved boost PFC are presented to verify the discussed features.

  • PDF

New Active Snubber Cells for High Step-up Interleaved DC-DC Converters

  • ;Kim, Seon-Ju;;Jeong, Hyeon-Ju;Choe, Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.18-20
    • /
    • 2018
  • This paper proposes a new pair of Active Snubber Cells (ASCs) which can fully provide soft switching for a Floating-output Double Boost Converter (FDBC). Besides that, the introduced ASCs are applicable for all basic DC-DC converters. Main switches of the FDBC turn on and off with ZVS. However, the main diodes are ZCS turned off. Furthermore Snubber switches are turned on and off with ZCS and ZVS respectively. It worthy to mention also that the soft switching for snubber diodes of the presented cells is achieved. A 1.5kW, 100kHz prototype of the FDBC with the proposed ASCs was built and evaluated; and the maximum attained efficiency is 97.3%.

  • PDF

A Study on the Efficiency of Intereaved AC/DC Converter using Voltage-Doubler (배압 회로를 이용한 인터리브 AC/DC 컨버터의 효율 특성에 관한 연구)

  • Seo, Sang-Hwa;Kim, Yong;Bae, Jin-Yong;Lee, Eun-Young;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.961_962
    • /
    • 2009
  • A novel, two-inductor, interleaved power-factor-corrected (PFC) boost converter that exhibits voltage-doubler characteristic when it operates with a duty cycle greater than 0.5 is introduced. The voltage-doubler characteristic of the proposed converter makes it quite suitable for universal-line (90~265VRMS) PFC applications. Because the proposed PFC boost rectifier operates as a voltage doubler at low line, its low-line range efficiency is greatly improved compared to that of its conventional counterpart. The performance of the proposed PFC rectifier was evaluated on an experimental 300W PFC prototype.

  • PDF

A Design and Control of Bi-directional Non-isolated DC-DC Converter with Coupled Inductors for Rapid Electric Vehicle Charging System

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungil;Kim, Daegyun
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.429-430
    • /
    • 2011
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology with coupled inductors. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. The pre-charging mode employs the staircase shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF