• Title/Summary/Keyword: Interlayer exchange coupling

Search Result 37, Processing Time 0.017 seconds

Magnetoresistance Properties of Hybrid GMR-SV Films with Nb Buffer Layers (Nb 버퍼층과 거대자기저항-스핀밸브 하이브리드 다층박막의 자기저항 특성)

  • Yang, Woo-Il;Choi, Jong-Gu;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.3
    • /
    • pp.82-86
    • /
    • 2017
  • The IrMn based GMR-SV films with three different buffer layers were prepared on Corning glass by using ion beam deposition and DC magnetron sputtering method. The major and minor magnetoresistance curves for three different buffer layers beneath the structure of NiFe(15 nm)/CoFe(5 nm)/Cu(2.5 nm)/CoFe(5 nm)/NiFe(7 nm)/IrMn(10 nm)/Ta(5 nm) at room temperature have shown different magnetoresistance properties. When the samples were annealed at $250^{\circ}C$ in vacuum, the magnetoresistance ratio, the coercivity of pinned ferromagnetic layer, and the interlayer coupling field of free ferromagnetic layer were enhanced while the exchange bias coupling field did not show noticeable changes.

Annealing Cycle Dependence of MR Properties for Free Layer in $Ni_{25}Mn_{75}-Spin$ Valve Films ($Ni_{25}Mn_{75}-Spin$ Valve 박막 자유층의 열처리 순환수에 따른 자기저항 특성)

  • 이낭이;이주현;이가영;김미양;이장로;이상석;황도근
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.2
    • /
    • pp.62-66
    • /
    • 2000
  • Annealing cycle number and nonmagnetic layer thickness dependences of interlayer coupling field ( $H_{inf}$ ) and coercivity ( $H_{cf}$ ) of free magnetic layer on NiMn alloy-spin valve films (SVF) were investigated. The SVF is Glass (7059)/N $i_{81}$F $e_{l9}$(70 $\AA$)/Co(10 $\AA$)/Cu(t $\AA$)/Co(15 $\AA$)N $i_{81}$$Fe_{19}$(35 $\AA$)/N $i_{25}$M $n_{75}$(250 $\AA$)Ta(50 $\AA$) films, it were fabricated using the dc sputtering method at different pinning layer thickness and nonmagnetic spacer thickness (Cu thickness; 30 $\AA$, 35 $\AA$, 40 $\AA$) of NiMn alloy with 25 at.%. Ni In case that Cu thickness of SVF is 35 $\AA$ and peak exchange coupling field ( $H_{ex}$) was 620 Oe, while coercivity $H_{c}$ = 280 Oe and MR ratio showed 2.5%. As for $H_{inf}$ and $H_{cf}$ , every SVF increased up to the stabilized values with the increase of annealing cycle number 15, which were $H_{inf}$ of 120 Oe and $H_{cf}$ of 75 Oe. The increase of $H_{cf}$ with the annealing cycle number seems to be caused by the effective reduction of Cu layer thickness due to the increase of interfacial mixing of Cu layer and Co layer. In addition, the $H_{inf}$ and $H_{cf}$ dependences of free NiFe layer by the interfacial mixing effect were appeared the different aspects when Cu layer becomes more thinner and thicker than Cu layer thickness of 35 $\AA$, respectively.ively....

  • PDF

Magnetoresistive of (NiFe/CoFe)/Cu/CoFe Spin-Valvec ((NiFe/CoFe)/Cu/CoFe Spin-Valve 박막의 자기저항 특성)

  • 오미영;이선영;이정미;김미양;이장로
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.5
    • /
    • pp.265-273
    • /
    • 1997
  • The MR ratios and the exchange biasing field and interlayer coupling field were investigated in $Ni_{91}Fe_{19}/Co_{90}Fe_{10}/Cu/Co_{90}Fe_{10}/NiO$ spin-valve sandwiches grown on antiferromagnetic NiO films as a function of the NiO thickness, the thickness of Cu and pinning layer $Co_{90}Fe_{10}$. The spin-valve sandwiches were deposited on the Corning glass 7059 by means of the 3-gun dc and 1-gun rf magnetron sputtering at a 5 mtorrpartial Ar pressure and room temperature. The deposition field was 50 Oe. The MR curve was measured by the four-terminal method with applied magnetic soft bilayer [NiFe/CoFe] (90$\AA$) decreased dramatically to less than 10 Oe when the NiFe/CoFe bilayer used an NiFe bilayer thicker that 20$\AA$. So NiFe layer improved the softmagnetic properties in the NiFe/CoFe bilayer. The GMR ratio and the magnetic field sensitivity of the spin-valve film $Ni_{91}Fe_{19}(40{\AA})/Co_{90}Fe_{10}(50{\AA}) /Cu(30{\AA})/Co_{90}Fe_{10}(35{\AA})/NiO(800{\AA})$ was 6.3% and about 0.5 (%/Oe), respectively. The MR ratio had 5.3% below an annealing temperature of 20$0^{\circ}C$ which slowly decreased to 3% above 30$0^{\circ}C$. The large blocking temperature of the spin-valve film was taken (as being) due to the good stability of the NiO films. Thus, the spin-valve films with a free NiFe/CoFe layer clearly had a high large GMR output and showed a effective magnetic field sensitivity for a suitable spin-valve head material.

  • PDF

Magnetoresistance of Single-type and Dual-type GMR-SV Multilayer Thin Films with Top and Bottom IrMn Layer (상부와 하부 IrMn층을 갖는 단일구조 및 이중구조 거대자기저항-스핀밸브 다층박막의 자기적 특성 비교 분석)

  • Choi, Jong-Gu;Kim, Su-Hee;Choi, Sang-Heon;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.115-122
    • /
    • 2017
  • The antiferromagnet IrMn based four different GMR-SV multilayers on Corning glass were prepared by using ion beam deposition and DC magnetron sputtering system. The magnetoresistance (MR) properties for single-type and dual-type GMR-SV multilayer films were investigated through the measured major and minor MR curves. The exchange bias coupling field ($H_{ex}$) and coercivity ($H_c$) of pinned layer, the $H_c$ and interlayer exchange coupling field ($H_{int}$) of free layer for the dual-type structure GMR-SV multilayer films consisted of top IrMn layer were 410 Oe, 60 Oe, 1.6 Oe, and 7.0 Oe, respectively. The minor MR curve of two free layers was performed the squarelike feature having a MR ratio of 8.7 % as the sum of 3.7 % and 5.0 %. The value of average magnetic field sensitivity (MS) was maintained at 2.0 %/Oe. Also, the magnetoresistance properties of the single-type and dual-type structure GMR-SV multilayer films consisted of bottom IrMn layer were decreased more than those of top IrMn layer. Two antiparallel states of magnetization spin arrays of the pinned and free layers in the dual-type GMR-SV multilayer films occurred the maximum MR value by the effect of spin dependence scattering.

Magnetic Sensitivity Depending on Width of IrMn Spin Valve Film Device (IrMn 스핀밸브 박막소자의 폭 크기에 의존하는 자장감응도)

  • Choi, Jong-Gu;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.2
    • /
    • pp.41-44
    • /
    • 2010
  • The Cu thickness dependence of magnetic sensitivity for the NiFe/Cu/NiFe/IrMn spin valve multilayer was investigated. The magnetic properties measured by minor MR curves for the Ta(5 nm)/NiFe(8 nm)/Cu(3.5 nm)/NiFe(4 nm)/IrMn(8 nm)/Ta(2.5 nm) multilayer is MR = 1.46 %, MS = 2.0 %/Oe, $H_c\;=\;2.6\;Oe$, and $H_{int}\;=\;0.1\;Oe$. The magnetic sensitivities of GMR-SV devices with ten different widths and a same length of $4.45\;{\mu}m$ by fabricated by photo lithography decreased from 0.3 %/Oe to 0.06%/Oe as from a width of $10\;{\mu}m$ to $1\;{\mu}m$.

Fabrication and Characteristics of a Highly Sensitive GMR-SV Biosensor for Detecting of Micron Magnetic Beads (미크론 자성비드 검출용 바이오센서에 대한 고감도 GMR-SV 소자의 제작과 특성 연구)

  • Choi, Jong-Gu;Lee, Sang-Suk;Park, Young-Seok
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.173-177
    • /
    • 2012
  • The multilayer structure of glass/Ta(5.8 nm)/NiFe(5 nm)/Cu(t nm)/NiFe(3 nm)/FeMn(12 nm)/Ta(5.8 nm) as typical GMR-SV (giant magnetoresistance-spin valve) films is prepared by ion beam sputtering deposition (IBD). The coercivity and magnetoresiatance ratio are increased and decreased for the decrease of Cu thickness when the thickness of nonmagnetic Cu layer from is varied 2.2 nm to 3.0 nm. It means that the decrease of non-magntic layer is effected to the interlayer exchange coupling of pinned layer and the spin configuration array of free layer. For experiment of detecting and dropping of magnetic beads we used the GMR-SV sensor with glass/Ta/NiFe/Cu/NiFe/FeMn/Ta structure. From the comparison of before and after for the dropping status of magnetic bead, the variations of MR ratio, $H_{ex}$, and $H_c$ are showed 0.9 %, 3 Oe, and 2 Oe, respectively. The fabrication of GMR-SV sensor was included in the process of film deposition, photo-lithography, ion milling, and MR measurement. Further, GMR-SV device can be easily integrated so that detecting biosensor on a single chip becomes possible.