Browse > Article
http://dx.doi.org/10.4283/JKMS.2017.27.3.082

Magnetoresistance Properties of Hybrid GMR-SV Films with Nb Buffer Layers  

Yang, Woo-Il (Department of Applied Physics and Electronics, Sangji University)
Choi, Jong-Gu (Department of Oriental Biomedical Engineering, Sangji University)
Lee, Sang-Suk (Department of Oriental Biomedical Engineering, Sangji University)
Abstract
The IrMn based GMR-SV films with three different buffer layers were prepared on Corning glass by using ion beam deposition and DC magnetron sputtering method. The major and minor magnetoresistance curves for three different buffer layers beneath the structure of NiFe(15 nm)/CoFe(5 nm)/Cu(2.5 nm)/CoFe(5 nm)/NiFe(7 nm)/IrMn(10 nm)/Ta(5 nm) at room temperature have shown different magnetoresistance properties. When the samples were annealed at $250^{\circ}C$ in vacuum, the magnetoresistance ratio, the coercivity of pinned ferromagnetic layer, and the interlayer coupling field of free ferromagnetic layer were enhanced while the exchange bias coupling field did not show noticeable changes.
Keywords
buffer layer; ferromagnet; hybrid; giant magnetoresistance (GMR); exchange coupling;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 M. D. Cubells-Beltran, C. Reig, J. Madrenas, A. D. Marcellis, J. Santos, S. Cardoso, and P. P. Freitas, Sensors 16, 939 (2016).   DOI
2 M. Z. Iqbal, G. Hussain, S. Siddique, and M. W. Iqbal, J. Magn. Magn. Mater. 432, 135 (2017).   DOI
3 W. H. Lee, D. G. Hwang, and S. S. Lee, J. Magn. 14, 18 (2009).   DOI
4 H. R. Kaufman, J. J. Cuomo, and J. M. E. Harper, J. Vac. Sci. Technol. 21, 725 (1982).   DOI
5 S. X. Wang and A. M. Taratorin, Magnetic Information Storage Technology, Academic Press, San Diego, Chap. 6, pp. 123-176 (1991).
6 P. Khajidmaa, J. G. Choi, and S. S. Lee, J. Magn. 22, 7 (2017).   DOI
7 B. K. Kim, J. Y. Lee, S. S. Kim, D. G. Hwang, S. S. Lee, J. Y. Hwang, M. Y. Kim, and J. R. Rhee, J. Kor. Magn. Soc. 13, 187 (2003).   DOI
8 J. G. Choi and S. S. Lee, J. Kor. Magn. Soc. 21, 132 (2011).   DOI
9 J. G. Choi and S. S. Lee, J. Kor. Magn. Soc. 20, 129 (2010).   DOI
10 J. G. Choi, D. G. Hwang, S. S. Lee, and J. R. Rhee, J. Kor. Phys. Soc. 62, 1954 (2013).   DOI
11 I. L. C. Merinoa, L. C. Figueiredob, E. C. Passamanic, V. P. Nascimentoc, F. Pelegrinid, and E. B. Saitovitcha, J. Magn. Magn. Mater. 432, 494 (2017).   DOI
12 E. Aristomenopoulou and D. Stamopoulos, J. Appl. Phys. 118, 063904 (2015).   DOI
13 D. Stamopoulos, E. Aristomenopoulou, and E. Manios, Appl. Phys. Lett. 105, 112602 (2014).   DOI
14 S. S. Lee, B. Y. Kim, J. Y. Lee, D. G. Hwang, S. W. Kim, M. Y. Kim, J. Y. Hwang, and J. R. Rhee, J. Appl. Phys. 95, 7525 (2004).   DOI
15 C. Strunk, C. Surgers, U Paschen, and H. v. Lohneysen, Phys. Rev. B49, 4053 (1994).
16 B. Zhao, Z. Zhang, X. Chen, X. Zhang, J. Pan, J. Ma, J. Li, Z. Wang, L. Wang, X. Xu, and Y. Jiang, J. Magn. Magn. Mater. 432, 291 (2017).   DOI
17 A. K. Singh and J. H. Hsu, J. Magn. Magn. Mater. 432, 96 (2017).   DOI