Browse > Article
http://dx.doi.org/10.4283/JKMS.2012.22.5.173

Fabrication and Characteristics of a Highly Sensitive GMR-SV Biosensor for Detecting of Micron Magnetic Beads  

Choi, Jong-Gu (Dept. of Oriental Biomedical Engineering, Sangji University)
Lee, Sang-Suk (Dept. of Oriental Biomedical Engineering, Sangji University)
Park, Young-Seok (Bluemtech., Ltd., Oriental Medical Industry Development Center, Sangji University)
Abstract
The multilayer structure of glass/Ta(5.8 nm)/NiFe(5 nm)/Cu(t nm)/NiFe(3 nm)/FeMn(12 nm)/Ta(5.8 nm) as typical GMR-SV (giant magnetoresistance-spin valve) films is prepared by ion beam sputtering deposition (IBD). The coercivity and magnetoresiatance ratio are increased and decreased for the decrease of Cu thickness when the thickness of nonmagnetic Cu layer from is varied 2.2 nm to 3.0 nm. It means that the decrease of non-magntic layer is effected to the interlayer exchange coupling of pinned layer and the spin configuration array of free layer. For experiment of detecting and dropping of magnetic beads we used the GMR-SV sensor with glass/Ta/NiFe/Cu/NiFe/FeMn/Ta structure. From the comparison of before and after for the dropping status of magnetic bead, the variations of MR ratio, $H_{ex}$, and $H_c$ are showed 0.9 %, 3 Oe, and 2 Oe, respectively. The fabrication of GMR-SV sensor was included in the process of film deposition, photo-lithography, ion milling, and MR measurement. Further, GMR-SV device can be easily integrated so that detecting biosensor on a single chip becomes possible.
Keywords
biosensor; magnetic bead; giant magnetoresistance-spin valve (GMR-SV); device; ion beam sputtering deposition (IBD); lithography; magnetoresistance ratio;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 D. A. Baker, Nature 405, 39 (2000).   DOI   ScienceOn
2 G. Li, S. Sun, R. J. Wilson, R. L. White, N. Pourmand, and S. X. Wang, Sens. Acut. A 126, 98 (2006).   DOI   ScienceOn
3 D. L. Graham, H. A. Feliciano, P. P. Fretias, L. A. Clarke, and M. D. Amaral, Sens. Acut. B 107, 936 (2005).   DOI   ScienceOn
4 B. M. de Boer, J. A. H. M. Kahlman, T. P. G. H. Jansen, H. Duric, and J. Veen, Biosens. Bioelectron. 22, 2366 (2006).
5 S. X. Wang and A. M. Taratorin, Magnetic Information Storage Technology, Academic Press, New York (1999).
6 S. H. Park, K. S. Soh, M. C. Ahn, D. G. Hwang, and S. S. Lee, J. Kor. Magn. Soc. 16, 157 (2006).   DOI   ScienceOn
7 S. S. Lee, S. H. Park, and K. S. Soh, Sae Mulli 52, 564 (2006).
8 W. H. Lee, D. G. Hwang, and S. S. Lee, J. Magnetics 14, 18 (2009).   DOI   ScienceOn
9 J. G. Choi, I. S. Koh, Y. M. Gong, M. H. Kim, Y. S. Park, D. G. Hwang, and S. S. Lee, J. Kor. Magn. Soc. 19, 1 (2009).   DOI   ScienceOn
10 J. G. Choi, T. J. Kwak, J. T. Shim, and S. S. Lee, J. Kor. Magn. Soc. 20, 35 (2010).   DOI   ScienceOn
11 J. G. Choi and S. S. Lee, J. Kor. Magn. Soc. 20, 41 (2010).   DOI   ScienceOn