• 제목/요약/키워드: Interlamellar Spacing

검색결과 42건 처리시간 0.022초

일방향응고시킨 $Al-CuAl_2$ 공정복합재료의 인장성질 (Tensile Properties of Unidirectionally Solidified $Al-CuAl_2$ Eutectic Composite)

  • 홍용환;홍종휘
    • 한국주조공학회지
    • /
    • 제10권6호
    • /
    • pp.503-508
    • /
    • 1990
  • The effect of interlamellar spacing on tensile behavior and fracture mode at high temperatures has been studied for unidirectionally solidified $Al-CuAl_2$ eutectic composite. The tensile properties at room temperature in $Al-CuAl_2$ eutectic composite improved as the interlamellar spacing decreased due to the constraint effects of closely spaced lamellae, while the opposite behavior was observed at high temperatures due to the annihilation of the constraint effects by phase boundary sliding. The $Al-CuAl_2$ eutectic composite exhibited brittle fracture mode below the temperature at which the reinforcing phase softened but ductile fracture mode above the temperature.

  • PDF

페라이트-펄라이트 조직 아공석강의 강도와 연성에 미치는 미세조직적 인자의 영향 (Effect of Microstructural Factors on Strength and Ductility in Hypoeutectoid Steels with Ferrite-Pearlite Structure)

  • 이상인;강준영;이상윤;황병철
    • 열처리공학회지
    • /
    • 제29권1호
    • /
    • pp.8-14
    • /
    • 2016
  • This article presents a study on the tensile properties of hypoeutectoid steels with different ferrite-pearlite microstructures. Nine kinds of hypoeutectoid steel specimens were fabricated by varying carbon content and isothermal transformation temperature. The microstructural factors such as ferrite & pearlite fraction, interlamellar spacing, and cementite thickness were quantitatively measured and then tensile tests were carried out on the specimens in order to investigate the correlation of the microstructural factors with strength and ductility. The pearlite volume fraction usually increased with decreasing transformation temperature, while the pearlite interlamellar spacing and cementite thickness decreased mostly with decreasing transformation temperature, irrespective of carbon content. The tensile test results showed that the yield and tensile strengths of all the steel specimens increased and their ductility was also improved as the transformation temperature decreased. For the steel specimens investigated, the difference in the transformation temperature dependence of strength and ductility could be explained by the fact that the variation in pearlite fraction with transformation temperature noticeably affected various microstructural factors such as pearlite interlamellar spacing and cementite thickness associated with pearlite fracture mechanism such as void initiation, cementite necking, and cracking.

Silica-Pillared H-kenyaites: Interlamellar Base Catalyzed-Reaction of Tetraethlorthosilicate in Water Suspension

  • 권오윤;최상원
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권1호
    • /
    • pp.69-75
    • /
    • 1999
  • The silica-pillared H-kenyaites were prepared by interlarmellar base-catalyzed reaction of tetraethylorthosilicate [TEOS, Si(OC2H5)4] intercalated into the interlayer of H-kenyaite. The intercalation of TEOS was conducted by the octylamine preswelling process, resulting in a dramatic increase in gallery height to 24.7 Å. The interlamellar hydrolysis of octylamine-TEOS/H-kenyaite paste were conducted between 10 min and 40 min in 0.00%, 0.05% and 0.10% NH3-water solution respectively, and resulting in siloxane-pillared H-kenyajte with gallery height of 28.2-31.8 Å. The calcination of samples at 538 ℃ resulted in silica-pillared H-kenyaites with a large surface areas between 411 m2/g and 885 m2/g, depending on the aging time and NH3 concentration. Samples with optimum specific surface areas and well ordered-basal spacing were obtained by reaction between 10 min and 40 min in pure water and 0.05% NH3-water solution. Mesoporous samples with narrow pore size distribution were also prepared by reaction for 10-40 min in 0.05% NH3 solution. Rapid interlamellar reaction of TEOS in pure water showed that intercalated octylamine itself could act as a base catalyst during interlamellar polycondensation of TEOS.

보자력 측정에 의한 아공석강 및 공석강의 열처리에 따른 미세조직 평가 (Characterization of Microstructures of Variously Heat Treated Hypoeutectoid and Eutectoid Steel by Magnetic Coercivity Measurement)

  • 변재원;김정석;권숙인
    • 한국재료학회지
    • /
    • 제14권8호
    • /
    • pp.565-572
    • /
    • 2004
  • The microstructures of variously heat treated hypoeutectoid($0.45\%$ carbon) and eutectoid($0.85\%$ carbon) steel were characterized by magnetic coercivity measurement. The effect of spheroidization of cementites on the coercivity was investigated for $0.45\%$ carbon steel. In case of $0.85\%$ carbon steel, microstructural parameters such as prior austenite grain size, phase and pearlite interlamellar spacing were measured along with coercivity to investigate the relationships between them. Prior austenite grain size had little effect on the measured coercivity. Coercivity was observed to be high in order of martensite, pearlite and ferrite phases. The linear decrease of coercivity with increasing pearlite interlamellar spacing was found. The effect of each microstructural factor on the coercivity and the potential of coercivity as a nondestructive evaluation parameter for assessing microstructures of steel products are discussed.

등온 시효한 Mg-Al-(Zn) 합금에서 불연속 석출물의 경도와 미세조직에 미치는 Zn 첨가의 영향 (Effects of Zn Addition on Hardness and Microstructure of Discontinuous Precipitates in Isothermally Aged Mg-Al-(Zn) Alloys)

  • 전중환
    • 열처리공학회지
    • /
    • 제35권4호
    • /
    • pp.177-184
    • /
    • 2022
  • The present study aims to investigate the influence of Zn addition on hardness and microstructural characteristics of discontinuous precipitates (DPs) formed by isothermal aging in Mg-9%Al and Mg-9%Al-1%Zn alloys. To obtain large DPs volume fractions in the microstructure, the alloy specimens were solution-treated at 688 K for 24 h followed by water quenching, and then aged at 413 K for 48 h. The aged Mg-9%Al-1%Zn alloy had higher DPs content than the Mg-9%Al alloy, indicating that the Zn addition plays a beneficial role in enhancing age-hardening response. The DPs in the Zn-containing alloy possessed the higher hardness than those of the Zn-free alloy. Microstructural examination revealed that the increased hardness of the DPs resulting from the Zn addition is closely associated with the lower α-(Mg)/β(Mg17Al12) interlamellar spacing and the higher volume fraction of β phase layer of the DPs.

Mg-Al 합금에서 등온 시효로 생성된 불연속 석출물의 미세조직과 경도에 미치는 Al 함량의 영향 (Effects of Al Content on Microstructure and Hardness of Discontinuous Precipitates Formed by Isothermal Aging in Mg-Al Alloys)

  • 전중환
    • 열처리공학회지
    • /
    • 제34권6호
    • /
    • pp.287-293
    • /
    • 2021
  • This study was intended to investigate the influence of Al content on hardness and microstructural characteristics of discontinuous precipitates (DPs) formed by isothermal aging in Mg-8.7%Al and Mg-10%Al alloys. In order to obtain large amount of DPs in the microstructure, the alloy specimens were solution-treated at 688K for 24 h followed by water quenching, and then aged at 418K for 48h. The Mg-Al alloy with higher Al content was characterized by higher volume fraction of DPs at the same aging condition, lower interlamellar spacing of the DPs, thinner β phase layer and higher β phase content in the DPs. This is closely related to the higher velocity of discontinuous precipitation process resulting from the higher Al supersaturation in the α-(Mg) matrix. The Mg-10%Al alloy showed higher hardness of the DPs and greater difference in hardness between as-cast state and DPs than the Mg-8.7%Al alloy.

Mg-Al 합금에서 연속 냉각 및 등온 시효로 생성된 불연속 석출물의 미세조직 특징과 경도 (Microstructural Characteristics and Hardness of Discontinuous Precipitates Formed by Continuous Cooling and Isothermal Aging in Mg-Al Alloy)

  • 전중환
    • 열처리공학회지
    • /
    • 제33권4호
    • /
    • pp.173-179
    • /
    • 2020
  • The purpose of this study was to investigate comparatively the microstructural characteristics and hardness of discontinuous precipitates (DPs) in Mg-9%Al alloy, which were formed by continuous cooling (CC) from 678 K to RT and isothermal aging (IA) at 413 K, respectively. In as-cast state, the Mg-9%Al alloy consisted of partially divorced eutectic β(Mg17Al12) particles with a small amount of DPs showing (α+β) lamellar morphology adjacent to the β particles. The DPs formed by CC had interlamellar spacings in a broad range of 0.85~2.12 ㎛ (1.51 ㎛ in average) owing to the various formation temperatures in response to continuous cooling process. Meanwhile, the DPs formed by IA had relatively narrower interlamellar spacings of 0.14~0.29 ㎛ (0.21 ㎛ in average), which is associated with the low and constant formation temperature. Thinner and higher volume fraction of β phase layers were noticeable in the DPs formed by IA. Higher hardness values were obtained in the DPs formed by IA than the DPs formed by CC, which may well be ascribed to the finer lamellar structure and higher β phase content of the DPs formed by IA.

Mg-Al 합금에서 용체화처리 후 연속 냉각으로 생성된 불연속 석출물 의 미세조직과 경도에 미치는 Al 함량의 영향 (Effects of Al Content on Microstructure and Hardness of Discontinuous Precipitates Formed by Continuous Cooling After Solution Treatment in Mg-Al Alloys)

  • 전중환
    • 열처리공학회지
    • /
    • 제35권6호
    • /
    • pp.295-302
    • /
    • 2022
  • The present study aims to investigate the effect of Al content on microstructure and hardness of discontinuous precipitates (DPs) formed by continuous cooling (CC) in Mg-8%Al and Mg-9.5%Al alloys. The DPs had a wide range of (α+β) interlamellar spacings, which may well be attributed to the different transformation temperatures during CC. The higher Al content gave rise to the higher level of interlamellar spacings of the DPs, and thicker and larger amount of β phase layer in the DPs. It is noticeable that the Mg-9.5%Al alloy exhibited higher hardness of the DPs than the Mg-8%Al alloy, but the ratio of increase in hardness of the DPs compared to that of the as-cast state was similar regardless of the Al content. The reason was discussed based on the differences in microstructures of the DPs for the Mg-8%Al and Mg-9.5%Al alloys.

용체화처리 후 연속 냉각한 Mg-8%Al-X%Zn 합금에서 생성된 불연속 석출물의 미세조직과 경도에 미치는 Zn 함량의 영향 (Effects of Zn Content on Microstructure and Hardness of Discontinuous Precipitates Formed in Mg-8%Al-X%Zn Alloys Subjected to Continuous Cooling after Solution Treatment)

  • 전중환
    • 열처리공학회지
    • /
    • 제36권4호
    • /
    • pp.223-229
    • /
    • 2023
  • This work was intended to investigate the effects of Zn content on microstructure and hardness of discontinuous precipitates (DPs) produced by continuous cooling (CC) in Mg-8%Al-X%Zn alloys with 0%, 0.5% and 1% of Zn contents (wt%). The DPs in the alloys possessed a wide range of (α+β) interlamellar spacings, which is attributed to the different transformation temperatures during CC. The higher Zn content resulted in the lower level of interlamellar spacings of the DPs, along with thinner and larger volume fraction of β phase layer in the DPs. It is noted that the DPs in the alloy with higher Zn content exhibited higher hardness, and that the ratio of increase in hardness of the DPs to that of the as-cast state was also increased with increasing Zn content. The reason was discussed on the basis of microstructural differences of the DPs in the Mg-8%Al-X%Zn alloys.

Micro-pulling down법을 이용한 $Al_2$O$_3$/ZrO$_2$eutectic fiber의 제조 및 기계적 특성 (Growth $Al_2$O$_3$/ZrO$_2$eutectic fibers by the micro-pulling down method and its mechanical properties)

  • 이종호;;;윤대호
    • 한국결정성장학회지
    • /
    • 제10권5호
    • /
    • pp.345-349
    • /
    • 2000
  • Micro-pulling down법을 이용하여 $Al_2O_3/ZrO_2$eutectic fiber를 제조하여 그 미세구조 및 기계적 특성과 성장속도의 관계를 조사하였다. 성장속도는 0.1~15 mm/min였으며, 직경 0.2~2 mm, 길이 500 mm의 eutectic fiber를 제조하였다. $Al_2O_3/ZrO_2$eutectic fiber의 미세구조는 성장속도에 따라 rod-shape structure에서 lameller structure를 거쳐 lamellar pattern을 갖는 cellular structure로 변화하였다. lamellar thickness는 성장속도가 1 mm/min에서 15 mm/min로 증가함에 따라 380 nm에서 110 nm로 감소하였다. 이와 같은 성장속도에 따른 lamellar thickness의 감소경향은 inverse-square-root로 나타내면, = 1 -l/2와 같이 표현할 수 있다. 여기서 는 m, 는 m/s의 단위를 갖는다. 13.1 Gpa의 hardness, 900 Mpa의 상온인장강도를 나타냈으며, 성장속도의 증가 즉, interlamellar spacing이 감소함에 따라 증가하는 경향을 나타냈다.

  • PDF