Browse > Article
http://dx.doi.org/10.12656/jksht.2022.35.6.295

Effects of Al Content on Microstructure and Hardness of Discontinuous Precipitates Formed by Continuous Cooling After Solution Treatment in Mg-Al Alloys  

Joong-Hwan, Jun (Industrial Materials Processing R&D Department, Korea Institute of Industrial Technology)
Publication Information
Journal of the Korean Society for Heat Treatment / v.35, no.6, 2022 , pp. 295-302 More about this Journal
Abstract
The present study aims to investigate the effect of Al content on microstructure and hardness of discontinuous precipitates (DPs) formed by continuous cooling (CC) in Mg-8%Al and Mg-9.5%Al alloys. The DPs had a wide range of (α+β) interlamellar spacings, which may well be attributed to the different transformation temperatures during CC. The higher Al content gave rise to the higher level of interlamellar spacings of the DPs, and thicker and larger amount of β phase layer in the DPs. It is noticeable that the Mg-9.5%Al alloy exhibited higher hardness of the DPs than the Mg-8%Al alloy, but the ratio of increase in hardness of the DPs compared to that of the as-cast state was similar regardless of the Al content. The reason was discussed based on the differences in microstructures of the DPs for the Mg-8%Al and Mg-9.5%Al alloys.
Keywords
Mg-Al alloy; Continuous cooling; Discontinuous precipitates; Hardness; Interlamellar spacing;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. Srinivas, D. Pavan, B. K. Venkatesha, R. R. Rao, and L. Mohith : Mater. Today: Proc. 54 (2022) 291.   DOI
2 C. H. Caceres, C. J. Davidson, J. R. Griffiths, and C. L. Newton : Mater. Sci. Eng. A 325 (2002) 344.   DOI
3 M. Tan, Z. Liu, and G. Quan : Energy Proc. 16 (2012) 457.   DOI
4 C. R. Hutchinson, J. F. Nie, and S. Gorsse : Metall. Mater. Trans. A 36A (2005) 2093.   DOI
5 K. N. Braszczynska-Malik : J. Alloy. Compd. 477 (2009) 870.   DOI
6 M. X. Zhang and P. M. Kelly : Scripta Mater. 48 (2003) 647.
7 J. D. Robson : Acta Mater. 61 (2013) 7781.   DOI
8 K. Fujii, K. Matsuda, T. Gonoji, K. Watanabe, T. Kawabata, Y. Uetani, and S. Ikeno : Mater. Trans. 52 (2011) 340.   DOI
9 S. Takeshita, C. Watanabe, R. Monzen, and S. Saikawa : J. Jpn. Inst. Light Met. 64 (2014) 470.
10 S. Celotto : Acta Mater. 48 (2000) 1775.   DOI
11 J. G. Han and J. H. Jun : J. Kor. Soc. Heat Treat. 32 (2019) 249.
12 J. H. Jun : J. Alloy. Compd. 73 (2017) 237.   DOI
13 J. H. Jun : J. Kor. Soc. Heat Treat. 33 (2020) 271.   DOI
14 S. Lee, S. Jeong, and B. Hwang : Kor. J. Mater. Res. 25 (2015) 583.   DOI
15 S. Lee, J. Kang, S. Lee, and B. Hwang : J. Kor. Soc. Heat Treat. 29 (2016) 8.   DOI
16 J. H. Jun : J. Kor. Soc. Heat Treat. 34 (2021) 287.   DOI
17 M. S. Dargusch, K. Pettersen, K. Nogita, M. D. Nave, and G. L. Dunlop : Mater. Trans. 47 (2006) 977.   DOI
18 W. Zheng, S. Li, B. Tand, and D. Zeng : China Found. 3 (2006) 270.
19 M. D. Nave, A. K. Dahle, and D. H. StJohn : Magnesium Technology, TMS, 2000, pp. 233.
20 J. H. Jun : J. Kor. Soc. Heat Treat. 33 (2020) 173.   DOI
21 C. Zener : Trans. AIME 167 (1946) 550.
22 N. Ridley : Metall. Trans. A 15A (1984) 1019.   DOI