DOI QR코드

DOI QR Code

Effects of Zn Content on Microstructure and Hardness of Discontinuous Precipitates Formed in Mg-8%Al-X%Zn Alloys Subjected to Continuous Cooling after Solution Treatment

용체화처리 후 연속 냉각한 Mg-8%Al-X%Zn 합금에서 생성된 불연속 석출물의 미세조직과 경도에 미치는 Zn 함량의 영향

  • Joong-Hwan Jun (Industrial Materials Processing R&D Department, Korea Institute of Industrial Technology)
  • 전중환 (한국생산기술연구원 산업소재공정연구부문)
  • Received : 2023.06.21
  • Accepted : 2023.07.07
  • Published : 2023.07.30

Abstract

This work was intended to investigate the effects of Zn content on microstructure and hardness of discontinuous precipitates (DPs) produced by continuous cooling (CC) in Mg-8%Al-X%Zn alloys with 0%, 0.5% and 1% of Zn contents (wt%). The DPs in the alloys possessed a wide range of (α+β) interlamellar spacings, which is attributed to the different transformation temperatures during CC. The higher Zn content resulted in the lower level of interlamellar spacings of the DPs, along with thinner and larger volume fraction of β phase layer in the DPs. It is noted that the DPs in the alloy with higher Zn content exhibited higher hardness, and that the ratio of increase in hardness of the DPs to that of the as-cast state was also increased with increasing Zn content. The reason was discussed on the basis of microstructural differences of the DPs in the Mg-8%Al-X%Zn alloys.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1049912).

References

  1. M. Tan, Z. Liu, and G. Quan: Energy Proc. 16 (2012) 457. 
  2. C. H. Caceres, C. J. Davidson, J. R. Griffiths and C. L. Newton: Mater. Sci. Eng. A 325 (2002) 344. 
  3. A. Srinivas, D. Pavan, B. K. Venkatesha, R. R. Rao, and L. Mohith: Mater. Today: Proc. 54 (2022) 291. 
  4. C. R. Hutchinson, J. F. Nie and S. Gorsse: Metall. Mater. Trans. A 36A (2005) 2093. 
  5. J. D. Robson: Acta Mater. 61 (2013) 7781. 
  6. K. N. Braszczynska-Malik: J. Alloy. Compd. 477 (2009) 870. 
  7. M. X. Zhang and P. M. Kelly: Scripta Mater. 48 (2003) 647. 
  8. K. Fujii, K. Matsuda, T. Gonoji, K. Watanabe, T. Kawabata, Y. Uetani and S. Ikeno: Mater. Trans. 52 (2011) 340. 
  9. S. Takeshita, C. Watanabe, R. Monzen and S. Saikawa: J. Jpn. Inst. Light Met. 64 (2014) 470. 
  10. S. Celotto: Acta Mater. 48 (2000) 1775. 
  11. J. G. Han and J. H. Jun: J. Kor. Soc. Heat Treat. 32 (2019) 249. 
  12. J. H. Jun: J. Kor. Soc. Heat Treat. 33 (2020) 271. 
  13. J.H. Jun: J. Alloy. Compd. 73 (2017) 237. 
  14. S. Lee, J. Kang, S. Lee, and B. Hwang: J. Kor. Soc. Heat Treat. 29 (2016) 8. 
  15. S. Lee, S. Jeong, and B. Hwang: Kor. J. Mater. Res. 25 (2015) 583. 
  16. J. H. Jun: J. Kor. Soc. Heat Treat. 34 (2021) 287. 
  17. J. H. Jun: J. Kor. Soc. Heat Treat. 35 (2022) 177. 
  18. J. H. Jun: J. Kor. Soc. Heat Treat. 35 (2022) 295. 
  19. W. Zheng, S. Li, B. Tand, and D. Zeng: China Found. 3 (2006) 270. 
  20. M. S. Dargusch, K. Pettersen, K. Nogita, M. D. Nave, and G. L. Dunlop: Mater. Trans. 47 (2006) 977. 
  21. Y. S. Wang, Q. D. Wang, C. J. Ma, W. J. Ding and Y. P. Zhu: Mater. Sci. Eng. A 342 (2003) 178. 
  22. M. D. Nave, A. K. Dahle and D. H. StJohn: Magnesium Technology, TMS, 2000, pp. 233. 
  23. M. D. Nave, A. K. Dahle and D. H. StJohn: Magnesium Technology, TMS, 2000, pp. 243. 
  24. C. Zener: Trans. AIME 167 (1946) 550. 
  25. N. Ridley: Metall. Trans. 15A (1984) 1019. 
  26. C. Q. Liu, H. W. Chen, N. C. Wilson and J. F. Nie: Scripta Mater. 163 (2019) 91. 
  27. M. Frebel and K. Behler: Metall. Trans. A 8 (1977) 621.