• 제목/요약/키워드: Intergranular

검색결과 346건 처리시간 0.03초

원심펌프 벌류트 혀의 균열 원인분석 및 건전성 평가 (Integrity Evaluation and Root Cause Analysis of Cracks at the Volute Tongue of Centrifugal Pump)

  • 박치용;김진원;김양석
    • 한국유체기계학회 논문집
    • /
    • 제3권4호
    • /
    • pp.7-14
    • /
    • 2000
  • This paper provides integrity evaluation and root cause analysis for defects observed at volute tongue, or cutwater, of the operating centrifugal pump in power plant. The cause of the cracks are analyzed and reviewed from the viewpoint of the operation and maintenance of the pumps, and the sample obtained from the cracked volute tongue of the pump are examined. At first, in-situ hardness test and microstructure examination were performed to understand the cause of cracking at volute tongue. The evaluation of structural integrity and the possibility of the crack propagation is also evaluated. Cracks were typical intergranular cracking and propagated along with prior austenite grain boundary. At easing volute tongue, the hardness was higher than ASTM requirement and a large amount of intergranular Cr carbide was precipitated. These were due to high C content in material. P content was also higher than ASTM requirement. Therefore, Cr carbide precipitation and P segregation at grain boundary, caused by higher C and P content in material, resulted in intergranular cracking of casing volute tongue. This procedure for integrity evaluation and root cause analysis is used to guide, and support the pump designer and manufacturer's material selection and process design to avoid a costly, unplanned outage of plant.

  • PDF

굽힘 압전 복합재료 작동기의 전기적 피로 거동 (Electric Fatigue Behavior of a Bending Piezoelectric Composite Actuator)

  • 우성충;구남서
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.362-367
    • /
    • 2008
  • In the present work, we address electric fatigue behavior in bending piezoelectric actuators using an acoustic emission technique. Electric cyclic fatigue tests have been performed up to ten million cycles on the fabricated specimens. To confirm the fatigue damage onset and its pathway, the source location and distributions of the AE behavior in terms of count rate are analyzed over the fatigue range. It is concluded that electric cyclic loading leads to fatigue damages such as transgranular damages and intergranular cracking in the surface of the PZT ceramic layer, and intergranular cracking even develops into the PZT inner layer, thereby degrading the displacement performance. The electric-induced fatigue behavior seems to show not a continuous process but a step-by-step process because of the brittleness of PZT ceramic. Nevertheless, this fatigue damage and cracking do not cause the final failure of the bending piezoelectric actuator loaded up to 107 cycles. Investigations of the AE behavior and the linear AE source location reveal that the onset time of the fatigue damage varies considerably depending on the existence of a glass-epoxy protecting layer.

  • PDF

Ti 함유된 스테인리스강 용접부의 전기화학적 특성 (Electrochemical Characteristics of Welded Stainless Steels Containing Ti)

  • 최한철
    • 한국표면공학회지
    • /
    • 제38권6호
    • /
    • pp.227-233
    • /
    • 2005
  • Electrochemical characteristics of welded stainless steels containing Ti have been studied by using the electrochemical techniques in 0.5 M $H_2SO_4$+0.01 M KSCN solutions at $25^{\circ}C$. Stainless steels with 12 mm thick-ness containing $0.2{\~}0.9 wt\%$ Ti were fabricated with vacuum melting and following rolling process. The stainless steels were solutionized for 1hr at $1050^{\circ}C$ and welded by MIG method. Samples were individually prepared with welded zone, heat affected zone, and matrix for intergranular corrosion and pitting test. Optical microscope, XRD and SEM are used for analysing microstructure, surface and corrosion morphology of the stainless steels. The welded zone of the stainless steel with lower Ti content have shown dendrite structure mixed with $\gamma$ and $\delta$ phase. The Cr-carbides were precipitated at twin and grain boundary in heat affected zone of the steel and also the matrix had the typical solutionized structure. The result of electrochemical measurements showed that the corrosion potential of welded stainless steel were Increased with higher Ti content. On the other hand, reactivation($I_r$), passivation and active current($I_a$) density were decreased with higher Ti content. In the case of lower Ti content, the corrosion attack of welded stainless steel was remarkably occurred along intergranular boundary and ${\gamma}/{\delta}$ phase boundary in heat affected zone.

전기적 피로하중을 받는 압전 작동기의 손상 메커니즘 (Damage Mechanisms of a Piezoelectric Actuator under Electric Fatigue Loading)

  • 우성충;구남서
    • 대한기계학회논문집A
    • /
    • 제32권10호
    • /
    • pp.856-865
    • /
    • 2008
  • Damage mechanisms in bending piezoelectric actuators under electric fatigue loading are addressed in this work with the aid of an acoustic emission (AE) technique. Electric cyclic fatigue tests have been performed up to $10^7$ cycles on the fabricated bending piezoelectric actuators. An applied electric loading range is from -6 kV/cm to +6 kV/cm, which is below the coercive field strength of the PZT ceramic. To confirm the fatigue damage onset and its pathway, the source location and distributions of the AE behavior in terms of count rate and amplitude are analyzed over the fatigue range. It is concluded that electric cyclic loading leads to fatigue damages such as transgranular damages and intergranular cracking in the surface of the PZT ceramic layer, and intergranular cracking even develops into the PZ inner layer, thereby degrading the displacement performance. However, this fatigue damage and cracking do not cause the final failure of the bending piezoelectric actuator loaded up to $10^7$ cycles. Investigations of the AE behavior and the linear AE source location reveal that the onset time of the fatigue damage varies considerably depending on the existence of a glass-epoxy protecting layer.

304L 스테인리스강의 열처리에 따른 입계부식민감도 연구 (Sensitivity to Intergranular Corrosion According to Heat Treatment of 304L Stainless Steel)

  • 장형민;김동진;김홍표
    • Corrosion Science and Technology
    • /
    • 제19권1호
    • /
    • pp.37-42
    • /
    • 2020
  • Even though 304 low-carbon (304L) stainless steel was developed to enhance the resistance to intergranular corrosion and stress corrosion cracking, it is occasionally subject to degradation in harsh environments. The degree of sensitization (DOS) of 304L stainless steel was studied as a function of sensitization using a double-loop electrochemical potentiokinetic reactivation (DL-EPR) method. Sensitizing heat treatment was performed in an Ar atmosphere at 500℃, 600℃, and 700℃, with heat treatment times varying from 0 to 96 h. DOS was measured by the ratio of the peak current density value of the forward scan to that of the reverse scan. After the EPR experiment, the specimen surface was observed by scanning electron microscopy and energy dispersive spectroscopy. The DOS of the specimens heat-treated at 600℃ increased with heat treatment times up to 48 h and then decreased due to a self healing effect. The DOS was higher in specimens heat-treated at 600℃ than those at 500℃ or 700℃. Corrosion of the sensitized specimens occurred mainly at the δ-γ phase boundary. The corrosion morphology at the δ-γ phase boundary changed with sensitizing heat-treatment conditions due to differences in chromium activity in γ austenite and δ ferrite.

Thermodynamic Analysis of Intergranular Additives in Sintered Nd-Fe-B Magnet

  • Cui, X.G.;Wang, X.H.;Cui, C.Y.;Yin, G.C.;Xia, C.D.;Cheng, X.N.;Xu, X.J.
    • Journal of Magnetics
    • /
    • 제22권2호
    • /
    • pp.244-249
    • /
    • 2017
  • To get deeper insight into the effect of intergranular additives in sintered Nd-Fe-B magnet and consequently improve the properties better, the interaction between additives (oxide, nitride, and carbide) and Nd-rich phase in the temperature range of 298.15-1400 K was analyzed thermodynamically. It can be found that the oxide additives became less stable than nitrides and carbides. Except for calcium oxide, almost all oxides could react with Nd from Nd-rich phase. To be different from oxide additives, the mechanism of nitrides and carbides was defined with various elements, either reaction with Nd from Nd-rich phase or not. The two different mechanisms would show different effects on the microstructure and hence properties of magnet. The thermodynamic analysis had a better agreement with the experimental information.

Alloy 600의 결정립계 산화에 대한 표면 변형의 영향 (Effects of Surface Deformation on Intergranular Oxidation of Alloy 600)

  • 하동욱;임연수;김동진
    • Corrosion Science and Technology
    • /
    • 제19권3호
    • /
    • pp.138-145
    • /
    • 2020
  • Immersion tests of Alloy 600 were conducted in simulated primary water environments of a pressurized water reactor at 325 ℃ for 10, 100, and 1000 h to obtain insight into effects of surface deformation on internal and intergranular (IG) oxidation behavior through precise characterization using various microscopic equipment. Oxidized samples after immersion tests were covered with polyhedral and filamentous oxides. It was found that oxides were abundant in mechanically ground (MG) samples the most. The number density of surface oxides increased with time irrespective of the method of surface finish. IG oxidation occurred in mechanically polished (MP) and chemically polished (CP) samples with thin internal oxidation layers. However, IG oxidation was suppressed with relatively thick internal oxidation layers in MG samples compared to MP and CP samples, suggesting that MG treatment could increase resistance to primary water stress corrosion cracking (PWSCC) from the standpoint of IG oxidation. As a result, appropriate surface treatment for Alloy 600 could prevent oxygen diffusion into grain boundaries, inhibit IG oxidation, and finally induce its high PWSCC resistance.

F316 오스테나이트 스테인리스강의 상변태 및 입계부식저항성에 미치는 입열의 영향 (Effects of Heat Inputs on Phase Transformation and Resistance to Intergranular Corrosion of F316 Austenitic Stainless Steel)

  • 정규석;이인성;김순태
    • Corrosion Science and Technology
    • /
    • 제19권3호
    • /
    • pp.146-155
    • /
    • 2020
  • To elucidate the effect of heat inputs on phase transformation and resistance to intergranular corrosion of F316 austenitic stainless steel (ASS), thermodynamic calculations of each phase and time-temperature-transformation diagram were conducted using JMaPro simulation software, oxalic acid etch test, double-loop electrochemical potentiokinetic reactivation test (DL-EPR), field emission scanning electron microscopy with energy dispersive spectroscopy, and transmission electron microscopy analyses of Cr carbide (Cr23C6), austenite phase and ferrite phase. F316 ASS containing a relatively low C content of 0.043 wt% showed a slightly sensitized microstructure (acceptably dual structure) due to a small amount of Cr carbide precipitated at heat affected zone irrespective of heat inputs. Based on results of DL-EPR test, although heat input was increased, the ratio of Ir to Ia was only increased very slightly due to a slight sensitization. Therefore, heat inputs have little influences on resistance to intergranular corrosion of F316 austenitic stainless steel containing 0.043 wt% C.

Fe-Aluminide합금의 미세조직과 기계적 특성에 관한 연구 (A Study on the Microstructure and Mechanical properties of Fe Aluminide alloys)

  • 조종춘;이도인;이성재;최병학;김학민
    • 연구논문집
    • /
    • 통권22호
    • /
    • pp.115-125
    • /
    • 1992
  • Mechanical properties and microstructure were investigated on vacuum induction melted $Fe_3A1$base alloys of $DO_3$ structure. Specal emphasis were put on the effect of alloy chemistry, grain size and process(rolling, directional solidification) on mechanical properties of Fe-22.5-39at.%Al at elevated temperature between room temperature and $800^{\circ}C$. grain size of as-cast alloys is refined by rolling from 1mm to $80\mum$. Tensile strength of Fe-24.lat.%AI was about 404MPa at the critical ordering temperature, and the fracture strain of the alloy was 1-2% at room temperature. An inverse temperature dependence of the strength is noticed as-cast $Fe_3A1$. The presence of Cr and Zr do not affect the room temperature ductility and high temperature strength. Fracture strain of directionally solidified(DS) $Fe_3A1$ is about 1%at room temperature, but is about 60%at. $T_C$(550^{\circ}C)$. Tensile strength of DS alloy is lower than that of as-cast alloy at $530^{\circ}C$ and $430^{\circ}C$. Failure mode at room temperature varies from transgranular fracture to intergranular fracture with the addition of Al. the failure mode also varies from mixed(transgranular+ intergranular) mode between room temperature and $500^{\circ}C$ to intergranular mode above $550^{\circ}C$

  • PDF

Shot-peening 표면처리된 Ti 함유 스테인리스강의 응력균열부식 (Stress Corrosion Cracking Characteristics of Shot-peened Stainless Steel Containing Ti)

  • 최한철
    • 한국표면공학회지
    • /
    • 제37권6호
    • /
    • pp.350-359
    • /
    • 2004
  • Stress corrosion cracking(SCC) characteristics of shot-peened stainless steel containing Ti (0.09 wt%-0.92 wt%) fabricated by the vacuum furnace were investigated using SCC tester and potentiostat. The homogenization and the sensitization treatment were carried out at $1050^{\circ}C$ for 1hr and $650^{\circ}C$ for 5 hr. The samples for SCC were shot-peened using $\Phi$0.6 mm steel ball for 4 min and 10 min. Intergranular and pitting corrosion characteristics were investigated by using EPR and CPPT. SCC test was carried out at the condition of$ 288^{\circ}C$, 90 kgf pressure, water with 8 ppm dissolved oxygen, and $8.3xl0^{-7}$/s strain rate. After the corrosion and see test, the surface of the tested specimen was observed by the optical microscope, TEM and SEM. Specimen with Ti/C ratio of 6.14 showed high tensile strength at the sensitization treatment. The tensile strength decreased with the increase of the Ti/C ratio. Pitting and intergranular corrosion resistance increased with the increase of Ti/C ratio. Stress corrosion cracking strength of shot-peened specimen was higher than that of non shot- peened specimen. Stress corrosion cracking strength decreased with the increase of the Ti/C ratio.