Browse > Article
http://dx.doi.org/10.4283/JMAG.2017.22.2.244

Thermodynamic Analysis of Intergranular Additives in Sintered Nd-Fe-B Magnet  

Cui, X.G. (School of Mechanical Engineering, Jiangsu University)
Wang, X.H. (School of Mechanical Engineering, Jiangsu University)
Cui, C.Y. (School of Mechanical Engineering, Jiangsu University)
Yin, G.C. (School of Mechanical Engineering, Jiangsu University)
Xia, C.D. (School of Mechanical Engineering, Jiangsu University)
Cheng, X.N. (School of Materials Science and Engineering, Jiangsu University)
Xu, X.J. (School of Mechanical Engineering, Jiangsu University)
Publication Information
Abstract
To get deeper insight into the effect of intergranular additives in sintered Nd-Fe-B magnet and consequently improve the properties better, the interaction between additives (oxide, nitride, and carbide) and Nd-rich phase in the temperature range of 298.15-1400 K was analyzed thermodynamically. It can be found that the oxide additives became less stable than nitrides and carbides. Except for calcium oxide, almost all oxides could react with Nd from Nd-rich phase. To be different from oxide additives, the mechanism of nitrides and carbides was defined with various elements, either reaction with Nd from Nd-rich phase or not. The two different mechanisms would show different effects on the microstructure and hence properties of magnet. The thermodynamic analysis had a better agreement with the experimental information.
Keywords
sintered Nd-Fe-B magnet; intergranular additives; thermodynamic analysis; experimental verification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Fidler and T. Schrefl, J. Appl. Phys. 79, 5029 (1996).   DOI
2 A. S. Kim and F. E. Camp, IEEE Trans. Magn. 3, 3823 (1997).
3 S. Pandian, V. Chandrasekaran, G. Markandeyulu, K. J. L. Iyer, and K. V. S. R. Rao, J. Appl. Phys. 92, 6082 (2002).   DOI
4 C. H. de Groot, K. H. J. Buschow, and F. R. de Boer, J. Appl. Phys. 83, 388 (1998).   DOI
5 T. S. Zhao, Y. B. Kim, and W. Y. Jeung, IEEE Trans. Magn. 35, 3301 (1999).   DOI
6 O. M. Ragg and I. R. Harris, J. Alloys Compd. 256, 252 (1997).   DOI
7 R. S. Mottram and A. J. Williams, J. Magn. Magn. Mater. 222, 305 (2000).   DOI
8 J. F. Hu, Y. L. Liu, M. L. Yin, Y. Z. Wang, B. P. Hu, and Z. X. Wang, J. Alloys Compd. 288, 226 (1999).   DOI
9 S. J. Heh, K. D. Lin, Y. M. Jein, F. D. King, and F. L. Lee, IEEE Trans. Magn. 26, 2637 (1990).   DOI
10 S. K. Chen, T. S. Chin, S. J. Heh, and K. D. Lin, IEEE Trans. Magn. 26, 2634 (1990).   DOI
11 A. R. Yan, Z. M. Chen, X. P. Song, and X. T. Wang, J. Alloys Compd. 239, 172 (1996).   DOI
12 Z. M. Chen, A. R. Yan, and X. T. Wang, J. Magn. Magn. Mater. 162, 307 (1996).   DOI
13 I. Barin and G. Platzki, Thermochemical data of pure substances, VCH, Weinheim (1995).
14 W. J. Mo, L. T. Zhang, A. D. Shan, L. J. Cao, J. S. Wu, and M. Komuro, J. Alloys Compd. 461, 351 (2008).   DOI
15 W. J. Mo, L. T. Zhang, Q. Z. Liu, A. D. Shan, J. S. Wu, K. Matahiro, and L. P. Shen, J. Rare Earths 26, 268 (2008).   DOI
16 A. S. Kim, J. Appl. Phys. 64, 5571 (1988).   DOI
17 X. K. Sun, G. F. Zhou, Y. C. Chuang, R. Grössinger, and H. R. Kirchmayr, J. Magn. Magn. Mater. 96, 197 (1991).   DOI
18 W. H. Cheng, W. Li, C. J. Li, and S. Z. Dong, J. Magn. Magn. Mater. 234, 274 (2001).   DOI
19 X. G. Cui, M. Yan, T. Y. Ma, W. Luo, and S. J. Tu, J. Magn. Magn. Mater. 321, 392 (2009).   DOI
20 S. Kobe Besenicar, J. Holc. G. Drafit, and B. Saje, IEEE Trans. Magn. 30, 693 (1994).   DOI
21 W. J. Mo, L. T. Zhang, L. Chen, A. D. Shan, and J. S. Wu, J. Chin. Rare Earth Soc. 25, 588 (2007).
22 G. X. Zhao, X. P. Song, Z. M. Chen, A. R. Yan, and X. T. Wang, Acta Metall. Sinica 32, 413 (1996).