• Title/Summary/Keyword: Interferon regulatory factor-1

Search Result 47, Processing Time 0.022 seconds

Adjuvant role of macrophages in stem cell-induced cardiac repair in rats

  • Lim, Soo yeon;Cho, Dong Im;Jeong, Hye-yun;Kang, Hye-jin;Kim, Mi Ra;Cho, Meeyoung;Kim, Yong Sook;Ahn, Youngkeun
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.1.1-1.10
    • /
    • 2018
  • Bone marrow-derived mesenchymal stem cells (BMMSCs) are used extensively for cardiac repair and interact with immune cells in the damaged heart. Macrophages are known to be modulated by stem cells, and we hypothesized that priming macrophages with BMMSCs would enhance their therapeutic efficacy. Rat bone marrow-derived macrophages (BMDMs) were stimulated by lipopolysaccharide (LPS) with or without coculture with rat BMCs. In the LPS-stimulated BMDMs, induction of the inflammatory marker iNOS was attenuated, and the anti-inflammatory marker Arg1 was markedly upregulated by coculture with BMMSCs. Myocardial infarction (MI) was induced in rats. One group was injected with BMMSCs, and a second group was injected with MIX (a mixture of BMMSCs and BMDMs after coculture). The reduction in cardiac fibrosis was greater in the MIX group than in the BMC group. Cardiac function was improved in the BMMSC group and was substantially improved in the MIX group. Angiogenesis was better in the MIX group, and anti-inflammatory macrophages were more abundant in the MIX group than in the BMMSC group. In the BMMSCs, interferon regulatory factor 5 (IRF5) was exclusively induced by coculture with macrophages. IRF5 knockdown in BMMSCs failed to suppress inflammatory marker induction in the macrophages. In this study, we demonstrated the successful application of BMDMs primed with BMMSCs as an adjuvant to cell therapy for cardiac repair.

Mucosal Immunity Related to FOXP3+ Regulatory T Cells, Th17 Cells and Cytokines in Pediatric Inflammatory Bowel Disease

  • Cho, Jinhee;Kim, Sorina;Yang, Da Hee;Lee, Juyeon;Park, Kyeong Won;Go, Junyong;Hyun, Chang-Lim;Jee, Youngheun;Kang, Ki Soo
    • Journal of Korean Medical Science
    • /
    • v.33 no.52
    • /
    • pp.336.1-336.12
    • /
    • 2018
  • Background: We aimed to investigate mucosal immunity related to forkhead box P3 ($FOXP3^+$) regulatory T (Treg) cells, T helper 17 (Th17) cells and cytokines in pediatric inflammatory bowel disease (IBD). Methods: Mucosal tissues from terminal ileum and colon and serum samples were collected from twelve children with IBD and seven control children. Immunohistochemical staining was done using anti-human FOXP3 and anti-$ROR{\gamma}t$ antibodies. Serum levels of cytokines were analyzed using a multiplex assay covering interleukin $(IL)-1{\beta}$, IL-4, IL-6, IL-10, IL-17A/F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, interferon $(IFN)-{\gamma}$, soluble CD40L, and tumor necrosis factor-${\alpha}$. Results: $FOXP3^+$ Treg cells in the lamina propria (LP) of terminal ileum of patients with Crohn's disease were significantly (P < 0.05) higher than those in the healthy controls. $ROR{\gamma}t^+$ T cells of terminal ileum tended to be higher in Crohn's disease than those in the control. In the multiplex assay, serum concentrations (pg/mL) of IL-4 ($9.6{\pm}1.5$ vs. $12.7{\pm}3.0$), IL-21 ($14.9{\pm}1.5$ vs. $26.4{\pm}9.1$), IL-33 ($14.3{\pm}0.9$ vs. $19.1{\pm}5.3$), and $IFN-{\gamma}$ ($15.2{\pm}5.9$ vs. $50.2{\pm}42.4$) were significantly lower in Crohn's disease than those in the control group. However, serum concentration of IL-6 ($119.1{\pm}79.6$ vs. $52.9{\pm}39.1$) was higher in Crohn's disease than that in the control. Serum concentrations of IL-17A ($64.2{\pm}17.2$ vs. $28.3{\pm}10.0$) and IL-22 ($37.5{\pm}8.8$ vs. $27.2{\pm}3.7$) were significantly higher in ulcerative colitis than those in Crohn's disease. Conclusion: Mucosal immunity analysis showed increased $FOXP3^+$ T reg cells in the LP with Crohn's disease while Th17 cell polarizing and signature cytokines were decreased in the serum samples of Crohn's disease but increased in ulcerative colitis.

Lipoteichoic Acid Suppresses Effector T Cells Induced by Staphylococcus aureus-Pulsed Dendritic Cells

  • Son, Young Min;Song, Ki-Duk;Park, Sung-Moo;Han, Seung Hyun;Yun, Cheol-Heui
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.1023-1030
    • /
    • 2013
  • Lipoteichoic acid (LTA), uniquely expressed on gram-positive bacteria, is recognized by Toll-like receptor 2 (TLR2) on not only antigen-presenting cells but also activated T cells. Therefore, it is reasonable to assume that LTA is acting on T cells. However, little is known about the effect of LTA on T-cell regulation. In the present study, we investigated the immunomodulatory effects of LTA on $CD4^+$ T cells. Effector $CD4^+$ T cells, induced after co-culture with S. aureus-pulsed dendritic cells, produced high levels of interferon-${\gamma}$, CD25, CD69, and TLRs 2 and 4. When effector $CD4^+$ T cells were treated with LTA, the expressions of the membrane-bound form of transforming growth factor (TGF)-${\beta}$ and forkhead box P3 increased. Coincidently, the proliferation of effector $CD4^+$ T cells was declined after LTA treatment. When TGF-${\beta}$ signaling was blocked by the TGF-${\beta}$ receptor 1 kinase inhibitor, LTA failed to suppress the proliferation of effector $CD4^+$ T cells. Therefore, the present results suggest that LTA suppresses the activity of effector $CD4^+$ T cells by enhancing TGF-${\beta}$ production.

A study on the regulatory effect of p-38 MAP kinase on nitric oxide and interleukin-6 in osteoblasts (조골세포에시 p-38 MAP kinase의 nitric oxide 및 interleukin-6 생성조절에 관한 연구)

  • Lee, Kyung-Won;Lee, Doe-Hoon;Kang, Kyung-Hwa;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.33 no.3 s.98
    • /
    • pp.199-210
    • /
    • 2003
  • Tooth movement is the result of bone metabolism in the periodontium, where various cytokines take important roles. Interleukin-6(II-6) and nitrous oxide (NO) were reported to be secreted from osteoblasts in the process of bone resorption. The mechanism of the process has not been clearly understood, but the activation of mitogen-activated protein kinase (MAPK) was known to be an important process in the release of the inflammatory cytotines in macrophages. In this regard, to prove the role of MAPK in the release of IL-6 and NO in MC3T3E-1 osteoblasts, Northern blot analysis, Western blot analysis and immune complex kinase assay were used. As a result, the treatment of MC3T3E-1 osteoblast cultures with combined $interferon-\gamma(IFN-\gamma)$, lipopolysaccharide (LPS) and tumor necrosis $factor-\alpha(TNF-\alpha)$ induces expressions of inducible nitric oxide synthase (iNOS) and IL-6, resulting in sustained releases of large amounts of NO and IL-6. However, $IFN-\gamma,\;LPS,\;and\;TNF-\alpha$ individually induce a non-detectable or small amount of NO and IL-6 in MC3T3E-1 osteoblasts. The role of MAPK activation in the early intracellular signal transduction involved in iNOS and IL-6 transcription in the combined agents-stimulated osteoblasts has been investigated. The p38 MAPK pathway is specifically involved in the combined agents-induced NO and IL-6 release, since NO and IL-6 release in the presence of a specific inhibitor of p38 MAPK, 4-(4-fluorophenyl)-2-(4-metylsulfinylphenyl)-5-(4-metylsulfinylphenyl)-5-(4-pyridyl)imidazole) (SB203580), were significantly diminished. In contrast, PD98059, a specific inhibitor of MEK1, had no effect on NO and IL-6 release. Northern blot analysis showed that the p3a MAPK pathway controlled the iNOS and IL-6 transcription level. These data suggest that p38 MAPK play an important role in the secretion of NO and IL-6 in $LPS/IFN{\gamma}-or\;TNF-\gamma-treated\;MC3T3E-1$ osteoblasts.

Activities of E6 Protein of Human Papillomavirus 16 Asian Variant on miR-21 Up-regulation and Expression of Human Immune Response Genes

  • Chopjitt, Peechanika;Pientong, Chamsai;Bumrungthai, Sureewan;Kongyingyoes, Bunkerd;Ekalaksananan, Tipaya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3961-3968
    • /
    • 2015
  • Background: Variants of human papillomavirus (HPV) show more oncogenicity than do prototypes. The HPV16 Asian variant (HPV16As) plays a major role in cervical cancer of Asian populations. Some amino acid changes in the E6 protein of HPV16 variants affect E6 functions such as p53 interaction and host immune surveillance. This study aimed to investigate activities of HPV16As E6 protein on modulation of expression of miRNA-21 as well as interferon regulatory factors (IRFs) 1, 3, 7 and c-fos. Materials and Methods: Vectors expressing E6 protein of HPV16As (E6D25E) or HPV16 prototype (E6Pro) were constructed and transfected into C33A cells. HCK1T cells expressing E6D25E or E6Pro were established by transducing retrovirus-containing E6D25E or 16E6Pro. The E6AP-binding activity of E6 and proliferation of the transfected C33A cells were determined. MiR-21 and mRNA of interesting genes were detected in the transfected C33A cells and/or the HCK1T cells, with or without treatment by culture medium from HeLa cells (HeLa-CM). Results: E6D25E showed binding activity with E6AP similar to that of E6Pro. Interestingly, E6D25E showed a higher activity of miR-21 induction than did E6Pro in C33A cells expressing E6 protein. This result was similar to the HCK1T cells expressing E6 protein, with HeLa-CM treatment. The miR-21 up-regulation significantly corresponded to its target expression. Different levels of expression of IRFs were also observed in the HCK1T cells expressing E6 protein. Interestingly, when treated with HeLa-CM, IRFs 1, 3 and 7 as well as c-fos were significantly suppressed in the HCK1T cells expressing E6D25E, whereas those in the HCK1T cells expressing E6Pro were induced. A similar situation was seen for IFN-${\alpha}$ and IFN-${\beta}$. Conclusions: E6D25E of the HPV16As variant differed from the E6 prototype in its activities on epigenetic modulation and immune surveillance and this might be a key factor for the important role of this variant in cervical cancer progression.

Porphyromonas Gingivalis Invasion of Human Aortic Smooth Muscle Cells

  • Lee, Seoung-Man;Lee, Hyeon-Woo;Lee, Jin-Yong
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.163-177
    • /
    • 2008
  • Periodontal disease, a form of chronic inflammatory bacterial infectious disease, is known to be a risk factor for cardiovascular disease (CVD). Porphyromonas gingivalis has been implicated in periodontal disease and widely studied for its role in the pathogenesis of CVD. A previous study demonstrating that periodontopathic P. gingivalis is involved in CVD showed that invasion of endothelial cells by the bacterium is accompanied by an increase in cytokine production, which may result in vascular atherosclerotic changes. The present study was performed in order to further elucidate the role of P. gingivalis in the process of atherosclerosis and CVD. For this purpose, invasion of human aortic smooth muscle cells (HASMC) by P. gingivalis 381 and its isogenic mutants of KDP150 ($fimA^-$), CW120 ($ppk^-$) and KS7 ($relA^-$) was assessed using a metronidazole protection assay. Wild type P. gingivalis invaded HASMCs with an efficiency of 0.12%. In contrast, KDP150 failed to demonstrate any invasive ability. CW120 and KS7 showed relatively higher invasion efficiencies, but results for these variants were still negligible when compared to the wild type invasiveness. These results suggest that fimbriae are required for invasion and that energy metabolism in association with regulatory genes involved in stress and stringent response may also be important for this process. ELISA assays revealed that the invasive P. gingivalis 381 increased production of the proinflammatory cytokine interleukin (IL)-$1{\beta}$ and the chemotactic cytokines (chemokine) IL (interleukin)-8 and monocyte chemotactic (MCP) protein-1 during the 30-90 min incubation periods (P<0.05). Expression of RANTES (regulation upon activation, normal T cell expressed and secreted) and Toll-like receptor (TLR)-4, a pattern recognition receptor (PRR), was increased in HASMCs infected with P. gingivalis 381 by RT-PCR analysis. P. gingivalis infection did not alter interferon-$\gamma$-inducible protein-10 expression in HASMCs. HASMC nonspecific necrosis and apoptotic cell death were measured by lactate dehydrogenase (LDH) and caspase activity assays, respectively. LDH release from HASMCs and HAMC caspase activity were significantly higher after a 90 min incubation with P. gingivalis 381. Taken together, P. gingivalis invasion of HASMCs induces inflammatory cytokine production, apoptotic cell death, and expression of TLR-4, a PRR which may react with the bacterial molecules and induce the expression of the chemokines IL-8, MCP-1 and RANTES. Overall, these results suggest that invasive P. gingivalis may participate in the pathogenesis of atherosclerosis, leading to CVD.

Heat shock protein X purified from Mycobacterium tuberculosis enhances the efficacy of dendritic cells-based immunotherapy for the treatment of allergic asthma

  • Kim, Hye-Young;Kang, Hyun Kyu;Cho, Joon;Jung, In Duk;Yoon, Gun Young;Lee, Min-Goo;Shin, Sung Jae;Park, Won Sun;Park, Jong-Hwan;Ryu, Seung-Wook;Park, Yeong-Min;You, Ji Chang
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.178-183
    • /
    • 2015
  • Dendritic cells play an important role in determining whether na${\ddot{i}}$ve T cells mature into either Th1 or Th2 cells. We determined whether heat-shock protein X (HspX) purified from Mycobacterium tuberculosis regulates the Th1/Th2 immune response in an ovalbumin (OVA)-induced murine model of asthma. HspX increased interferon-gamma, IL-17A, -12 and transforming growth factor (TGF)-${\beta}$ production and T-bet gene expression but reduced IL-13 production and GATA-3 gene expression. HspX also inhibited asthmatic reactions as demonstrated by an increase in the number of eosinophils in bronchoalveolar lavage fluid, inflammatory cell infiltration in lung tissues, airway luminal narrowing, and airway hyper-responsiveness. Furthermore, HspX enhanced OVA-induced decrease of regulatory T cells in the mediastinal lymph nodes. This study provides evidence that HspX plays critical roles in the amelioration of asthmatic inflammation in mice. These findings provide new insights into the immunotherapeutic role of HspX with respect to its effects on a murine model of asthma.