• Title/Summary/Keyword: Interferometry

Search Result 751, Processing Time 0.028 seconds

SAR Measurements of Surface Displacements at Augustine Volcano, Alaska, Associated with the 1986 and 2006 Eruption

  • Lee, C.W.;Jung, H.S.;Won, J.S.;Lu, Z.;Kwoun, O.I.
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.401-404
    • /
    • 2007
  • Augustine volcano is an active stratovolcano located at the southwest of Anchorage, Alaska. Augustine volcano had experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. We measured the surface displacements of the volcano by radar interferometry and GPS before and after the eruption in 2006. ERS-1/2, RADARSAT-1 and ENVISAT SAR data were used for the study. Multiple interferograms were stacked to reduce artifacts caused by different atmospheric conditions. Least square (LS) method was used to reduce atmospheric artifacts. Singular value decomposition (SVD) method was applied for retrieval of time sequential deformations. The observed surface displacements from satellite radar interferometry were compared with GPS data. Satellite radar interferometry helps to understand the surface displacements system of Augustine volcano.

  • PDF

Vibration Analysis of Loudspeaker by Using Electronic Speckle Pattern Interferometry (전자 스페클 간섭계에 의한 스피커 진동 해석)

  • 김정규;노경완;강영준;김동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.356-361
    • /
    • 1996
  • Nowadays, Electronic Speckle Pattern Interferometry is a well established measuring technique with a wide range of industrial applications, particularly in the fields of deformation measurement and vibration analysis. Comparing with holographic inteferometry, it has some attractive features, which are rapid recording and reconstruction, satisfiable automation etc. Time-average ESPI was used to provide vibration mode shape of an object whose vibration amplitude is given as a fringe pattern. However, it is not possible to determine the direction of motions of a point on the object at any given time, because time-average method does not give any information about the phase of vibration. A better technique is stroboscopic method which can measure the amplitude and phase of vibrating surface. In this paper, loudspeakers were tested by these two methods and the mode shape and amplitude of vibration were visualized. As measured results, we can assume that these techniques will be applied directly in the loudspeaker industry.

  • PDF

Dispersive White-light Interferometry for in-situ Volumetric Thickness Profile of Thin-film Layers and a refractive index (분산형 백색광 간섭계를 이용한 미세 박막 구조물의 삼차원 두께 형상 및 굴절률의 실시간 측정)

  • Ghim Y.S.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.23-24
    • /
    • 2006
  • We present a dispersive scheme of white-light interferometry that enables not only to perform tomographical measurements of thin-film layers but also to measure a refractive index without mechanical depth scanning. The interferometry is found useful particularly for in-situ 3-D inspection of micro-engineered surfaces such as liquid crystal displays, semi-conductor and MEMS structure, which requires for high-speed implementation of 3-D surface metrology.

  • PDF

Deformation Analysis of Composits-Patched Concrete Using Moire Interferometry (무아레 간섭계를 이용한 복합재 보강 콘크리트의 변형해석)

  • Ju, Jin-Won;Chae, Su-Eun;Sin, Dong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.160-170
    • /
    • 2002
  • Many of aged and damaged concrete structure have been revitalized with composite reinforcement. Flexural behaviors of composite-patched concrete specimens are characterized by high-sensitivity moire interferometry. The three-mirror, four-beam interferometry system and a compact loading system are used for obtaining singe patterns representing whole-field contour maps of in-plane displacements. It is seen from the calibration test for the loading system that the measured bending displacement is in excellent agreement with the displacement calculated by the beam theory. The crack opening displacement as well as the bending and the horizontal displacement fur the notched and unnotched specimen are investigated. The results also show that the notched specimen reinforced by a composite sheet has sufficient stiffness and strength compared to the original concrete specimen.

Bi-directional encryption and transmission of binary data with 4-step phase-shifting interferometry in digital network (디지털망에서의 4-step 위상 천이 간섭계를 이용한 이진 데이터의 쌍방향 광 암호화 및 전송)

  • Lee, Hyeon-Jin;Gil, Sang-Geun;Jeon, Seok-Hui;Kim, Nam
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.02a
    • /
    • pp.135-136
    • /
    • 2006
  • We present a new binary data encryption and transmission technique based on 4-step phase-shifting interferometry for a security system. Phase-shifting interferometry is used for recording phase and amplitude information on CCD device. 4-step phase-shifting is implemented by moving the PZT mirror with equidistant phase steps of ${\pi}/2$. The basic idea is that we reuse a 256 gray-level digital hologram to encrypt binary data with 4-step phase-shifting interferometry.

  • PDF

Optical Interferometry as Electrochemical Emission Spectroscopy of Metallic alloys in Aqueous Solutions

  • Habib, K.;AI-Mazeedi, H.
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.277-282
    • /
    • 2003
  • Holographic interferometry, an electromagnetic method, was used to study corrosion of carbon steel, aluminum and copper nickel alloys in NaOH, KCI and $H_2SO_4$ solutions respectively. The technique, called electrochemical emission spectroscopy, consisted of in-situ monitoring of changes in the number of fringe evolutions during the corrosion process. It allowed a detailed picture of anodic dissolution rate changes of alloys. The results were compared to common corrosion measurement methods such as linear polarization resistance measurements and electrochemical impedance spectroscopy. A good agreement between both data was found, thus indicating that holographic interferometry can be a very powerful technique for in-situ corrosion monitoring.

Precision Profile Measurement of Mirror Surfaces by Phase Shifting Interferometry (광위상간섭에 의한 경면의 정밀 형상측정)

  • 김승우;공인복;민선규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1530-1535
    • /
    • 1992
  • An optical method of phase shifting interferometry is presented for the 3-dimensional profile measurement of mirror surfaces with nanometer resolution. A series of optical interferometric fringes are generated by comparing the surface to be measured with a reference flat. The fringes are captured by a CCD camera and then analyzed to obtain actual surface profile. Detailed principles are described along with necessary image processing algorithms. finally, several measurement examples are discussed which were performed on lapped surfaces, hard discs, and semiconductor wafers.

A Study on the Vibration Characteristics Analysis of Composite Materials by Using Electronic Speckle Pattern Interferometry Method (전자처리 스페클 패턴 간섭법(ESPI)을 이용한 복합재료의 진동 특성 해석에 관한 연구)

  • 김경석;정성균;정현철;양승필;김형택;김동일;이승환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.68-74
    • /
    • 1998
  • The ESPI(Electronic Speckle Pattern Interferometry) is a real time, full-field, non-destructive optical measurement technique that allows static and dynamic deformation analysis and surface shape measurements of engineering structures. e .g. turbine blades. vehicle engine components, body panels, etc. This technique is very similar to holographic interferometry, but uses a solid static camera and an image processing board for recording and digital processing of speckle patterns. In this paper it is presented that FEM results for the free vibration of symmetrically laminated composite as [30/-30/90]s. The natural frequencies of laminated composite rectangular plates having the particular boundary condition are experimentally obtained. In order to demonstrate the validity of the experiment, FEM analysis using ANSYS was performed and natural frequencies experimentally obtained is compared with calculation by FEM analysis. The results obtained from both experiment and FEM analysis show a good agreement.

  • PDF

Optical Encryption Scheme for Cipher Feedback Block Mode Using Two-step Phase-shifting Interferometry

  • Jeon, Seok Hee;Gil, Sang Keun
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.155-163
    • /
    • 2021
  • We propose a novel optical encryption scheme for cipher-feedback-block (CFB) mode, capable of encrypting two-dimensional (2D) page data with the use of two-step phase-shifting digital interferometry utilizing orthogonal polarization, in which the CFB algorithm is modified into an optical method to enhance security. The encryption is performed in the Fourier domain to record interferograms on charge-coupled devices (CCD)s with 256 quantized gray levels. A page of plaintext is encrypted into digital interferograms of ciphertexts, which are transmitted over a digital information network and then can be decrypted by digital computation according to the given CFB algorithm. The encryption key used in the decryption procedure and the plaintext are reconstructed by dual phase-shifting interferometry, providing high security in the cryptosystem. Also, each plaintext is sequentially encrypted using different encryption keys. The random-phase mask attached to the plaintext provides resistance against possible attacks. The feasibility and reliability of the proposed CFB method are verified and analyzed with numerical simulations.

The Measurment Method of Small Deformation by using Holographic Interferometry (홀로그래픽 간섭법을 이용한 미소변형 측정법)

  • Kang, Young-June;Moon, Sang-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.52-58
    • /
    • 1995
  • Conventional measurement methods for non-destructive testing(NDT) in nuclear power plants and other industrial plants have been performed as the methods of contact with objects to be inspect, but those methods have been taken relatively much time to be inspected. Holographic interferometry which is a non-contact optical measurement method using a coherent light can overcome these demerit, and also has an advantage that the quantitative measurement of small deformation for large areas can be accomplished at a time with high precision. In this paper the comparisons of the experimental results form holographic interferometry with those from the finite element method(FEM) and the analytical solutions of the elastic equation are discussed.

  • PDF