• Title/Summary/Keyword: Interference fit

Search Result 61, Processing Time 0.027 seconds

Machining Tool Path Generation for Point Set

  • Park, Se-Youn;Shin, Ha-Yong
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.45-53
    • /
    • 2009
  • As the point sampling technology evolves rapidly, there has been increasing need in generating tool path from dense point set without creating intermediate models such as triangular meshes or surfaces. In this paper, we present a new tool path generation method from point set using Euclidean distance fields based on Algebraic Point Set Surfaces (APSS). Once an Euclidean distance field from the target shape is obtained, it is fairly easy to generate tool paths. In order to compute the distance from a point in the 3D space to the point set, we locally fit an algebraic sphere using moving least square method (MLS) for accurate and simple calculation. This process is repeated until it converges. The main advantages of our approach are : (1) tool paths are computed directly from point set without making triangular mesh or surfaces and their offsets, and (2) we do not have to worry about no local interference at concave region compared to the other methods using triangular mesh or surface model. Experimental results show that our approach can generate accurate enough tool paths from a point set in a robust manner and efficiently.

Quadrature-detection-error Compensation in a Sinusoidally Modulated Optical Interferometer Using Digital Signal Processing

  • Hwang, Jeong-hwan;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.204-209
    • /
    • 2019
  • In an optical interferometer that uses sinusoidal modulation and quadrature detection, the amplitude and offset of the interference signal vary with time, even without considering system noise. As a result, the circular Lissajous figure becomes elliptical, with wide lines. We propose and experimentally demonstrate a method for compensating quadrature detection error, based on digital signal processing to deal with scaling and fitting. In scaling, fluctuations in the amplitudes of in-phase and quadrature signals are compensated, and the scaled signals are fitted to a Lissajous unit circle. To do so, we scale the average fluctuation, remove the offset, and fit the ellipse to a unit circle. Our measurements of a target moving with uniform velocity show that we reduce quadrature detection error from 5 to 2 nanometers.

Active Coping Strategy Model for Chronic Arthritis : Appling Internal Model of World and Coping Resource (내적모형과 대응자원을 이용한 만성관절염 환자의 적극적 대응전략모형)

  • Mun, Mi-Sook;Lim, Nan-Young
    • Journal of muscle and joint health
    • /
    • v.6 no.1
    • /
    • pp.100-135
    • /
    • 1999
  • Typical symptoms of rheumatic disease affect overall daily living and cause severe stress. Individuals afflicted with rheumatic disease have many illness-related stresses. Pain was the predominantly perceived stress followed by limitation in mobility, difficulties in carrying out activities of daily living. helplessness, dependency on others, threat to self-esteem, interference in social activity, interference in family relationships. difficulties performing at work, and discomfort of the treatment. Patients with chronic arthritis are subjected to long periods of continuous stress, which may require the management by the health care provider. In these cases, the purpose of the nursing is helping to promote health through supporting patient's coping. Therefore, for the nursing intervention to be effective, it is critical to build a theoretical framework that describes stress-coping for chronic arthritis. Thus, the purpose of this dissertation is to present a theoretical framework which describes the stress-coping processes and to empirically test pathos of this framework for the people with chronic arthritis. The foundation upon which this framework is built in the Erickson, Tomlin, and Swain(1983) theory of Modeling and role-Modeling. The subjects were 275 patients with rheumatoid arthritis or osteoarthritis who visited the outpatient clinic. A hypothetical model of stress-coping was tested by covariance structure analysis with PC-LISREL 8.12 program. As a result, the overall fit was good(Chi-square=94.49, P=0.00, RMR=0.067, GFI=0.95, AGFI=0.91, NNFI=0.93, NFI=0.91) for the hypothetical model. The results of hypothesis testing were as follows : Basic need satisfaction had a statistically significant influence on illness-related experience, emotional stress and coping resources. Internal health locus of control had a statistically significant influence on coping resources. However, independent variables(basic need satisfaction, internal health locus of control, illness-related experience, emotional stress and coping resource) did not have significantly influence on coping. And then, the hypothetical model was modified by considering both the theoretical implication and statistical significance of the parameter estimates. The revised model had a better fit to the data(Chi-square=83.11(P=0.00), RMR=0.061, GFI=0.96, AGFI=0.92, NNFI=0.95, NFI=0.92). Hypothesis emerged from the revised model was tested. The results of hypothesis testing were as follows : Basic need satisfaction had a statistically significant influence on illness-related experience, emotional stress and coping resources. Internal health locus of control had a statistically significant influence on illness-related experience and coping resources. Internal health locus of control, illness-related experience, emotional stress and coping resources had a significantly influence on coping. According to the results of this dissertation, basic need satisfaction and internal health locus of control play a central role in appraisal of illness-related experience and coping resources. And illness related-experience, emotional stress, and coping resources affect on coping activities. In summary, nursing interventions to enhance basic need satisfaction and internal health locus of control will decrease illness related experience and emotional stress and increase coping resources. Increased coping resources will prompt coping activities.

  • PDF

Studies on the Synthesis and Magnetic Properties of Cobalt Nanoparticles in the Polymer Film (코발트 나노 입자가 도입된 초상자성 고분자 박막의 제조 및 자성 연구)

  • Kim, Y.;Yoon, M.;Kim, Y.M.;Volkov, V.;Park, I.W.;Song, H.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.2
    • /
    • pp.59-63
    • /
    • 2003
  • Superparamagnetic properties of self-aggregated cobalt nanoparticles in the perfluorinated ion-exchange polymeric membrane (MF-4SK) prepared by ion-exchange and recovery methods were investigated by transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID) magnetometer at various temperatures. Our experimental results show that cobalt nanoparticles in MF-4SK for the concentration of $7.8{\times}10^{19}$ atoms per 1 g of polymer membrane exhibit superparamagnetic properties above the average blocking temperature ($T_{B}$), which is determined to be around 185 K at applied field of 500 Oe. The average particle radius of 4.0 nm achieved from Langevin function fit is in good agreement with TEM observations. This experimental evidence suggests that cobalt nanoparticles in polymer film obey a single domain theory. The results are discussed in the light of current theory for the superparamagnetic behavior of magnetic nanoparticles.

Estimation and Application of Reliability Values for Strength of Material Following Gamma Distribution (감마분포를 따르는 재료강도의 신뢰도 예측과 응용)

  • Park, Sung-Ho;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.223-230
    • /
    • 2012
  • The strength of brittle material has commonly been characterized by a normal distribution or Weibull distribution, but it may fit the gamma distribution for some material. The use of an extreme value distribution is proper when the largest values of a set of stresses dominate the failure of the material. This paper presents a formula for reliability estimation based on stress-strength interference theory that is applicable when the strength of material is distributed like a gamma distribution and the stress is distributed like an extreme value distribution. We verified the validity of the equation for the reliability estimation by examining the relationships among the factor of safety, the coefficient of variation, and the reliability. The required minimum factor of safety and the highest allowable coefficient of variation of stress can be estimated by choosing an objective reliability and estimating the reliabilities obtained for various factors of safety and coefficients of variation.

A Study on Measuring Leaky Waves of Outdoor CATV Facilities in The Mobile Band (800MHz 이동통신 대역에서의 유선방송 전송설비 누설전자파 측정방법에 관한 연구)

  • Park, Seong-Gyoon
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • Cable leakage criterion of technical regulations on CATV transmission system was reinforced considering interference against CDMA mobile communication system in 2007. The criterion is $3{\mu}V$/m(at 10m) over 824~849MHz. But generally it is difficult for us to decide if a given CATV transmission facilities conform to it or not through simple measurement methods. In this paper, the problems on measuring cable leakage is identified theoretically and the measuring model with spectrum analyzer, LNA, and antenna is proposed to settle the problems. Also, the model is proved to be useful by practically measuring outdoors and analysing the results and the process to decide to fit to the criterion or not is established.

Degradation Characteristics of Tubes in the Steam Generator Tubesheet (증기발생기 관판내부 균열 열화 특성)

  • Cho, Nam Cheoul;Kang, Yong Suk;Kim, Heung Nam;Lee, Kuk-Hee
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • There has been extensive experience associated with the operation of SGs wherein it was believed, based on NDE, that throughwall tube indications were present within the tubesheet. The installation of the SG tubes usually involves the development of a short interference fit, referred to as the tack expansion, at the bottom of the tubesheet. The tack expansion was usually effected by a hard rolling process and thereafter, in most instance, by the expansion of a urethane plug inserted into the tube end and compressed in the axial direction. The rolling process by its very nature is considered to be intensive with regard to metalworking at the inside surface of the tube and would be expected to lead to higher residual surface stresses. Alternate repair criteria(ARC) in the tack expansion area have been developed and applied to nuclear power plants in USA, however domestic nuclear power plants have not applied ARC for tubes in tubeheet area yet. In consideration of the degradation characteristics of tubes in the Steam Generator tubesheet, this paper suggests ARC application for tubes in the steam generator tubesheet of the domestic nuclear power plants in order to assure life time of the steam generator as well as nuclear power plants.

Fabrication and characterization of PbIn-Au-PbIn superconducting junctions

  • Kim, Nam-Hee;Kim, Bum-Kyu;Kim, Hong-Seok;Doh, Yong-Joo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.5-8
    • /
    • 2016
  • We report on the fabrication and measurement results of the electrical transport properties of superconductor-normal metal-superconductor (SNS) weak links, made of PbIn superconductor and Au metal. The maximum supercurrent reaches up to ${\sim}6{\mu}A$ at T = 2.3 K and the supercurrent persists even at T = 4.7 K. Magnetic field dependence of the critical current is consistent with a theoretical fit using the narrow junction model. The superconducting quantum interference device (SQUID) was also fabricated using two PbIn-Au-PbIn junctions connected in parallel. Under perpendicular magnetic field, we clearly observed periodic oscillations of dV/dI with a period of magnetic flux quantum threading into the supercurrent loop of the SQUID. Our fabrication methods would provide an easy and simple way to explore the superconducting proximity effects without ultra-low-temperature cryostats.

Hydroforming Simulation of High-strength Steel Cross-members in an Automotive Rear Subframe

  • Kim, Kee-Joo;Sung, Chang-Won;Baik, Young-Nam;Lee, Yong-Heon;Bae, Dae-Sung;Kim, Keun-Hwan;Won, Si-Tae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.55-58
    • /
    • 2008
  • Hydroforming is a forming technology in which a steel tube is set in a die and formed to fit a specified shape by applying hydraulic pressure from inside the tube while also applying force in the tube axial direction (axial feed). In present study, the entire design process chain for an automotive cross-member was simulated and developed using hydroforming technology on high-strength steel. The part design stage required a feasibility study. The process was designed using computer-aided design techniques to confirm the actual hydroformability of the part in detail. The possibility of using hydroformable cross-member parts was examined using cross-sectional analyses, which were essential to ensure the formability of the tube material for each forming step, including pre-bending and hydroforming. The die design stage included all the components of a prototyping tool. Press interference was investigated in terms of geometry and thinning.

Die Design for the Hot Extrusion with TiB$_2$Insert (TiB$_2$ 인서트를 체결한 열간압출 금형설계 및 제작)

  • Kwon, Hyuk-Hong;Lee, Jung-Ro
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.118-124
    • /
    • 2002
  • The use of ceramic inserts in hot extrusion dies offers significant technical and economic advantages over other forms of manufacture. In this paper, process simulation and stress analysis are thus combined during the design, and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic deflections generated in shrink fitting the die inserts and that caused by the stresses generated in the process. The shrink fit analysis has been performed that enables optimal design of the dies taking into account the elastic deflections which generated in shrink fitting the die inserts and that caused by the stresses generated in the process and by using DEFORM software for process analysis. This data can be processed as load input data for a finite element die-stress analysis. Process simulation and stress analysis are thus combined during the die design. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads. The results are compared with the experimental ones for verification.