• Title/Summary/Keyword: Interference Impact

Search Result 225, Processing Time 0.024 seconds

Energy Efficiency Modelling and Analyzing Based on Multi-cell and Multi-antenna Cellular Networks

  • Ge, Xiaohu;Cao, Chengqian;Jo, Min-Ho;Chen, Min;Hu, Jinzhong;Humar, Iztok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.560-574
    • /
    • 2010
  • In this paper, the relationship between the energy efficiency and spectrum efficiency in a two-cell cellular network is obtained, and the impact of multi-antenna on the energy efficiency of cellular network is analyzed and modeled based on two-state Markovian wireless channels. Then, the energy efficiency of multi-cell cellular networks with co-channel interference is investigated. Simulation results verify the proposed model and the energy-spectrum efficiency tradeoffs in cellular networks with multi-antenna and co-channel interference.

Environmental effects by corona discharge from a 765kV double circuit transmission line (765kV 2회선 송전선의 코로나 방전에 의한 환경영향 연구)

  • 김정부;이동일;신구용;양광호;안희성;구자윤
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.451-455
    • /
    • 1996
  • This paper specified the measurement results conducted by the Korea Electric Power Research Institute (KEPRI) 765kV double circuit transmission test line that measured the audible noise, hum noise, radio interference, electric field and aeolian measurement. This test line consists of 6-480mm$^{2}$ conductors per phase. The analysis of the test results shows that this 6-Rail conductor bundle satisfies the audible noise criterion under the stable rainy weather condition and the radio interference level under the fair weather. And the other items are also agreed with the design level criterion. (author). 9 refs., 7 figs., 2 tabs.

  • PDF

Analysis of Macro-Diversity in LTE-Advanced

  • Kim, Gun-Yeob Peter;Lee, Jung-Ah C.;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1596-1612
    • /
    • 2011
  • Coordinated Multi-Point (CoMP) transmission / reception is being studied in Long Term Evolution-Advanced (LTE-A) for future evolution of the $3^{rd}$ Generation Partnership Project (3GPP) LTE. Support of soft handover is essential for improving the performance of cell edge users. CoMP provides a natural framework for enabling soft handover in the LTE system. This paper evaluates the soft handover gain in LTE-A downlink. Mathematical analysis of signal to interference plus noise ratio (SINR) gain and the handover margins for soft handover and hard handover are derived. CoMP system model is developed and an inter-cell and intra-cell interference model is derived, taking into account the pathloss, shadowing, cell loading, and traffic activity. Reference signal received power (RSRP) is used to define the triggers and the measurements for soft handover. Our results indicate that parameter choices such as handover margin and the CoMP set size impact CoMP performance gain.

Dynamic Channel Allocation Algorithm for TD-SCDMA Smart Antenna System with Inter-cell Interference (인접 셀 간섭영향을 고려한 TD-SCDMA 스마트 안테나 시스템의 동적 채널 할당 알고리즘)

  • Jang, Min-Seok;Hong, Een-Kee
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.415-422
    • /
    • 2007
  • In this paper, we proposed a new dynamic channel allocation algorithm for TD-SCDMA with cross time slots. In order to reduce the interference in cross time slot, the mobile stations (MSs) are divided into two groups: the Near Group consisting of MSs near by the base station(BS) and the Far Group including the MSs far from the BS. The reverse link for MSs in the Near Group and forward link for MSs in the Far Group are allocated to the cross time slot. In cellular systems, a BS has multiple neighbor BSs. Some of neighbor BSs can operate in the same direction link while the others have cross time slot. Thus, it is required to determine which BS has the most significant impact in terms of interference. We divide each cell into 6 areas based on the direction of arrival of smart antenna and the most significant neighbor sector is determined with this division. The proposed allocation method and area division method can avoid the severe interference in cross time slots and increase the system capacity about 2%~9% compared to FCA, and 0.5%~1.3% compared to RCA.

  • PDF

Cell Edge SINR of Multi-cell MIMO Downlink Channel (다중 셀 MIMO 하향채널의 셀 에지 SINR)

  • Park, Ju-Yong;Kim, Ki-Jung;Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.105-117
    • /
    • 2015
  • In this paper, we consider 19 cells with the two tiers for polar-rectangular coordinates (PRCs) and provide the cell edge performance of cellular networks based on distance from cell center i.e., BS (base station). When FFR is applied(or adopted) to cell edge, it is expected that BS cooperation, or a coordinated multipoint (CoMP) multiple access strategy will further improve the system performance. We proposed a new method to evaluate the sum rate capacity of the MIMO DC of multicell system. We improve the performance of cell edge users for intercell interference cancelation in cooperative downlink multicell systems. Simulation results show that the proposed scheme outperforms the reference schemes, in terms of cell edge SINR (signal-to-interference-noise ratio) with a minimal impact on the network path loss exponent. We show 13 dB improvements in cell-edge SINR by using reuse of three relative to reuse of one. BS cooperation has been proposed to mitigate the cell edge effect.

Robust Acknowledgement Transmission for Long Range Internet of Things (장거리 사물 인터넷 기기를 위한 간섭에 강인한 ACK 기술)

  • Lee, Il-Gu
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.47-52
    • /
    • 2018
  • Wi-Fi enabled Internet of Things (IoTs) had a substantial impact on society, economy and industry. However wireless connectivity technologies in unlicensed band such as Wi-Fi are vulnerable to interferences. They also face difficulty providing wireless connectivity over long range in dense networks due to the dynamically changed interference effect and asymmetric interference conditions. In this paper, robust acknowledgement transmission scheme is proposed for long range IoTs. According to the proposed scheme, it is possible to control the transmission rate of the transmission success rate of the response frame by adjusting the transmission rate of the response frame when the interference is present asymmetrically. It is also possible to use higher data rate when high quality link is guaranteed. The evaluation results demonstrated the proposed scheme improves the aggregate throughput by at most 9 Mbps when 20 MHz bandwidth transmission mode was adopted.

Gear Teeth Modification for a 2.5MW Wind Turbine Gearbox (2.5MW 풍력발전기 기어박스 치형수정)

  • Lee, Hyoung Woo;Kang, Dong-Kwon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.109-117
    • /
    • 2014
  • This paper reports a method to modify the gear tooth profile of a wind turbine gearbox to reduce the noise caused by the impact of the gear teeth. The major causes of tooth impact are the elastic deformation of the gear teeth, shafts, and case of the gearbox under loading, and the fabrication tolerances in gear manufacturing. In this study, the tooth profile was modified considering the elastic deformation of the gear tooth and the tooth lead modification to compensate for tooth interference in the lead direction as a result of shaft deformations. The method was applied to the gearbox of a 2.5MW wind turbine, and the transmission error was characterized before and after modifying the gear teeth. For the modified gear teeth, the transmission error (67.6%) was lower by 17.8%. Additionally, the gear contact stress was reduced by 6.3%, to 22.3%.

Harmonic Impact Studies of Grid-Connected Wind Power and PV Generation Systems (계통연계 풍력 및 태양광발전시스템 고조파 영향 검토)

  • Lee, Sang-Min;Jung, Hyong-Mo;Yu, Gwon-Jong;Lee, Kang-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2185-2191
    • /
    • 2009
  • Wind power and photovoltaic(PV) generation systems are the fastest growing sources of renewable energy. The nonlinear devices, such as power electronic converter or inverter, of wind power and PV generation systems are the source of harmonics in power systems. The harmonic-related problems can have significant detrimental effects in the power system, such as capacitor heating, data communication interference, rotating equipment heating, transformer heating, relay misoperation and switchgear failure. There is a greater need for harmonic analysis that can properly maintain the power quality. By measuring harmonics of existing wind power and PV generation systems as harmonics modeling, the studies were made to see the harmonic impact of grid-connected wind power and PV generation systems.

Impact of Channel Estimation Errors on SIC Performance of NOMA in 5G Systems (5G 시스템에서 비직교 다중접속의 SIC 성능에 대한 채널 추정 오류의 영향)

  • Chung, Kyuhyuk
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.9
    • /
    • pp.22-27
    • /
    • 2020
  • In the fifth generation (5G) networks, the mobile services require much faster connections than in the fourth generation (4G) mobile networks. Recently, as one of the promising 5G technologies, non-orthogonal multiple access (NOMA) has been drawing attention. In NOMA, the users share the frequency and time, so that the more users can be served simultaneously. NOMA has several superiorites over orthogonal multiple access (OMA) of long term evolution (LTE), such as higher system capacity and low transmission latency. In this paper, we investigate impact of channel estimation errors on successive interference cancellation (SIC) performance of NOMA. First, the closed-form expression of the bit-error rate (BER) with channel estimation errors is derived, And then the BER with channel estimation errors is compared to that with the perfect channel estimation. In addition, the signal-to-noise (SNR) loss due to channel estimation errors is analyzed.

High-impact chronic pain: evaluation of risk factors and predictors

  • Ilteris Ahmet Senturk;Erman Senturk;Isil Ustun;Akin Gokcedag;Nilgun Pulur Yildirim;Nilufer Kale Icen
    • The Korean Journal of Pain
    • /
    • v.36 no.1
    • /
    • pp.84-97
    • /
    • 2023
  • Background: The concept of high-impact chronic pain (HICP) has been proposed for patients with chronic pain who have significant limitations in work, social life, and personal care. Recognition of HICP and being able to distinguish patients with HICP from other chronic pain patients who do not have life interference allows the necessary measures to be taken in order to restore the physical and emotional functioning of the affected persons. The aim was to reveal the risk factors and predictors associated with HICP. Methods: Patients with chronic pain without life interference (grade 1 and 2) and patients with HICP were compared. Significant data were evaluated with regression analysis to reveal the associated risk factors. Receiving operating characteristic (ROC) analysis was used to evaluate predictors and present cutoff scores. Results: One thousand and six patients completed the study. From pain related cognitive processes, fear of pain (odds ratio [OR], 0.92; 95% confidence interval [CI], 0.87-0.98; P = 0.007) and helplessness (OR, 1.06; 95% CI, 1.01-1.12; P = 0.018) were found to be risk factors associated with HICP. Predictors of HICP were evaluated by ROC analysis. The highest discrimination value was found for pain intensity (cut-off score > 6.5; 83.8% sensitive; 68.7% specific; area under the curve = 0.823; P < 0.001). Conclusions: This is the first study in our geography to evaluate HICP with measurement tools that evaluate all dimensions of pain. Moreover, it is the first study in the literature to evaluate predictors and cut-off scores using ROC analysis for HICP.