DOI QR코드

DOI QR Code

Robust Acknowledgement Transmission for Long Range Internet of Things

장거리 사물 인터넷 기기를 위한 간섭에 강인한 ACK 기술

  • Lee, Il-Gu (Department of Convergence Security Engineering, Sungshin University)
  • 이일구 (성신여자대학교 융합보안공학과)
  • Received : 2018.07.09
  • Accepted : 2018.09.20
  • Published : 2018.09.28

Abstract

Wi-Fi enabled Internet of Things (IoTs) had a substantial impact on society, economy and industry. However wireless connectivity technologies in unlicensed band such as Wi-Fi are vulnerable to interferences. They also face difficulty providing wireless connectivity over long range in dense networks due to the dynamically changed interference effect and asymmetric interference conditions. In this paper, robust acknowledgement transmission scheme is proposed for long range IoTs. According to the proposed scheme, it is possible to control the transmission rate of the transmission success rate of the response frame by adjusting the transmission rate of the response frame when the interference is present asymmetrically. It is also possible to use higher data rate when high quality link is guaranteed. The evaluation results demonstrated the proposed scheme improves the aggregate throughput by at most 9 Mbps when 20 MHz bandwidth transmission mode was adopted.

와이파이 기반의 사물인터넷 장치는 사회, 경제, 산업에 막대한 영향을 미치고 있다. 그러나 와이파이와 같은 비면허 대역에서 동작하는 무선 전송 기술은 간섭에 취약하다. 장거리의 밀집 네트워크에서 무선 연결을 시도하는 경우에는 동적으로 변하는 간섭 상황과 비대칭적인 간섭 조건 때문에 성능 열화가 발생한다. 본 논문에서는 장거리 사물인터넷을 위한 ACK 전송 방법을 제안한다. 본 연구 논문에서 제안한 방법에 따르면, 송신 장치와 수신 장치의 간섭 상황이 다른 비대칭적 간섭 환경에서 송신 장치가 간섭 레벨을 측정한 후 응답 프레임의 전송 속도를 추천해 응답 프레임의 전송 성공률을 향상시킨다. 그리고 고품질의 무선 채널 환경이 보장되는 경우에는 더 높은 전송 속도로 전송할 수 있다. 성능 평가 결과에 따르면 제안하는 방법에 의해 비대칭 간섭 상황에서 20 MHz 대역폭 전송 모드에서 스루풋이 최대 9 Mbps 향상됨을 알 수 있다.

Keywords

References

  1. M. Chen, Y. Miao, Y. Hao, K. Hwang. (2017). Narrow band internet of things. IEEE Access, 5, 20557-20577. https://doi.org/10.1109/ACCESS.2017.2751586
  2. D. E. Culler. (2017). The once and future Internet of everything. GetMobile: Mobile Computing and Communications, 20(3), 5-11.
  3. I. Yaqoob, E. Ahmed, I. A. T. Hashem, A. I. A. Ahmed, A. Gani, M. Imran, M. Guizani. (2017). Internet of Things architecture: Recent advances, taxonomy, requirements, and open challenges. IEEE wirelress communications, 24(3), 10-16.
  4. J. G. Hester, J. Kimionis, M. M. Tentzeris. (2017). Printed Motes for IoT Wireless Networks: State of the Art, Challenges, and Outlooks. IEEE Transactions on Microwave Theory and Techniques, 65(5), 1819-1830. https://doi.org/10.1109/TMTT.2017.2650912
  5. B. Vejlgaard, M. Lauridsen, H. Nguyen, I. Z. Kovacs, P. Mogensen, M. Sorensen. (2017). Interference impact on coverage and capacity for low power wide area IoT networks. In IEEE Wireless Communications and Networking Conference (WCNC), 1-6.
  6. C. D. Lee. (2017). An Adaptive Traffic Interference Control System for Wireless Home IoT Services. Journal of Digital Convergence, 15(4), 259-266. https://doi.org/10.14400/JDC.2017.15.4.259
  7. D. C. Son. (2016). A Study on Algorithm for Reducing Communication Error Rate in Special Network. Journal of Digital Convergence, 14(11), 325-331. https://doi.org/10.14400/JDC.2016.14.11.325
  8. J. H. Kim, J. H. Cho, D. J. Cho, D. C. Son. (2017). Journal of Convergence for Information Technology, 7(5), 117-122. https://doi.org/10.22156/CS4SMB.2017.7.5.117
  9. T. Aittomaki, V. Koivunen. (2017). Mismatched filter design and interference mitigation for MIMO radars. IEEE Transactions on Signal Processing, 65(2), 454-466. https://doi.org/10.1109/TSP.2016.2620960
  10. H. Al-Tous, I. Barhumi, N. Al-Dhahir. (2017). Narrow-Band Interference Mitigation Using Compressive Sensing for AF-OFDM Systems. IEEE Transactions on Vehicular Technology, 66(7), 6146-6159. https://doi.org/10.1109/TVT.2016.2646744
  11. S. Y. Kim, Y. J. Kim, H. K. Song. (2017). Adaptive cooperative transmission with spatial phase coding for interference mitigation in the wireless cellular communication. IEICE Transaction on Fundamentals of Electronics, Communications and Computer Sciences, 100(1), 317-321.
  12. ANSI/IEEE Std 802.11, LAN/MAN Standards Committee of the IEEE Computer Society Std. (1999). Wireless LAN Medium Access Control (MAC) and Physical LAyer (PHY) specifications.
  13. ANSI/IEEE Std 802.11e, LAN/MAN Standards Committee of the IEEE Computer Society Std. (2005). Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amedment 7: Medium Access Control (MAC) Quality of Service (QoS).
  14. M. S. Afaqui, E. G. Vilegas, E. L. Aguilera. (2016). IEEE 802.11ax: Challenges and requirements for future high efficiency WiFi. IEEE Wireless Communications, 99, 2-9.
  15. I. Selinis, K. Katsaros, S. Vahid, R. Tafazolli. (2017). Exploiting the Capture Effect on DSC and BSS Color in Dense IEEE 802.11ax Deployments. In ACM Proceedings of the Workshop on ns-3, 47-54.
  16. S. Parthasarathy, S. Kumar, R. K. Ganti, S. Kalyani, K. Giridhar. (2018). Error Vector Magnitude Analysis in Generalized Fading With Co-Channel Interference. IEEE Transactions on Communications, 66(1), 345-354. https://doi.org/10.1109/TCOMM.2017.2748127
  17. I. G. Lee, M. Kim. (2016). Interference-aware self-optimizing Wi-Fi for high efficiency internet of things in dense networks. Computer Communications, 89, 60-74.
  18. G. Manzi, M. Felizianim P. A. Beeckman, N. van Dijk. (2009). Coexistence between ultra-wideband radio and narrow-band wireless LAN communication systems - Part II: EMI evaluation. IEEE Transaction on Electromagnetic Compatibility, 51(2), 382-390. https://doi.org/10.1109/TEMC.2008.2007648
  19. S. Vitturi, L. Seno, F. Tramarin, M. Bertocco. (2013). On the rate adaptation techniques of IEEE 802.11 networks for industrial applications. IEEE Transactions on Industrial Informatics, 9(1), 198-208. https://doi.org/10.1109/TII.2012.2189223