• 제목/요약/키워드: Interfacial shear stress

검색결과 148건 처리시간 0.027초

Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour

  • Jahangir, Hashem;Esfahani, Mohammad Reza
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.877-889
    • /
    • 2020
  • This work features the outcomes of an empirical investigation into the characteristics of steel reinforced grout (SRG) composite - concrete interfaces. The parameters varied were loading rate, densities of steel fibres and types of load displacement responses or measurements (slip and machine grips). The following observations and results were derived from standard single-lap shear tests. Interfacial debonding of SRG - concrete joints is a function of both fracture of matrix along the bond interface and slippage of fibre. A change in the loading rate results in a variation in peak load (Pmax) and the correlative stress (σmax), slip and machine grips readings at measured peak load. Further analysis of load responses revealed that the behaviour of load responses is shaped by loading rate, fibre density as well as load response measurement variable. Notably, the out-of-plane displacement at peak load increased with increments in load rates and were independent of specimen fibre densities.

Impact of thermal effects in FRP-RC hybrid cantilever beams

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.573-583
    • /
    • 2021
  • This paper presents a theoretical approach of the structures reinforced with bonded FRP composites, taking into account loading model, shear lag effect and the thermal effect. These composites are used, in particular, for rehabilitation of structures by stopping the propagation of the cracks. They improve rigidity and resistance, and prolong their lifespan. In this paper, an original model is presented to predict and to determine the stresses concentration at the FRP end, with the new theory analysis approach. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the concrete beam, the FRP plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. The numerical resolution was finalized by taking into account the physical and geometric properties of materials that may play an important role in reducing the stress values. This solution is general in nature and may be applicable to all kinds of materials.

Constitutive Equations for Dilute Bubble Suspensions and Rheological Behavior in Simple Shear and Uniaxial Elongational Flow Fields

  • Seo Dongjin;Youn Jae Ryoun
    • Fibers and Polymers
    • /
    • 제6권2호
    • /
    • pp.131-138
    • /
    • 2005
  • A theoretical model is proposed in order to investigate rheological behavior of bubble suspension with large deformation. Theoretical constitutive equations for dilute bubble suspensions are derived by applying a deformation theory of ellipsoidal droplet [1] to a phenomenological suspension theory [2]. The rate of deformation tensor within the bubble and the time evolution of interface tensor are predicted by applying the proposed constitutive equations, which have two free fitting parameters. The transient and steady rheological properties of dilute bubble suspensions are studied for several capillary numbers (Ca) under simple shear flow and uniaxial elongational flow fields. The retraction force of the bubble caused by the interfacial tension increases as bubbles undergo deformation. The transient and steady relative viscosity decreases as Ca increases. The normal stress difference (NSD) under the simple shear has the largest value when Ca is around 1 and the ratio Of the first NSD to the second NSD has the value of 3/4 for large Ca but 2 for small Ca. In the uniaxial elongational flow, the elongational viscosity is three times as large as the shear viscosity like the Newtonian fluid.

탄소섬유의 양극산화가 탄소섬유 강화 복합재료의 기계적 계면 특성에 미치는 영향 (Effect of Anodized Carbon Fiber Surfaces on Mechanical Interfacial Properties of Carbon Fibers-reinforced Composites)

  • 박수진;오진석;이재락
    • Composites Research
    • /
    • 제15권6호
    • /
    • pp.16-23
    • /
    • 2002
  • 본 연구에서는 양극산화 처리에 따른 고강도 PAN계 탄소섬유의 표면 특성 변화가 기계적 계면 물성에 미치는 영향을 조사하였다. 탄소섬유의 표면성질은 산.염기도, SEM, XPS, 그리고 접촉각 측정을 통하여 알아보았으며, 복합재료의 기계적 계면 특성은 ILSS와 $K_{IC}$를 통하여 고찰하였다. 탄소섬유 표면의 산도와 $O_{ls}/C_{IC}$가 증가하였는데, 이는 산소관능기의 발달에 기인하고, 양극산화된 탄소섬유의 표면자유에너지의 증가는 극성요소의 증가에 기인하는 것으로 사료된다. ILSS와 $K_{IC}$ 같은 기계적 계면 성질은 양극산화로 향상되어졌는데, 이러한 결과는 좋은 젖음성이 최종 복합재료의 섬유와 에폭시 수지 매트릭스 사이의 계면결합력을 증가시기는 중요한 역할을 하기 때문으로 사료된다.

현무암섬유 섬유 배향에 따른 현무암섬유 강화 복합재료의 기계적 계면특성 영향 (Influence of Fiber Array Direction on Mechanical Interfacial Properties of Basalt Fiber-reinforced Composites)

  • 김명석;박수진
    • 폴리머
    • /
    • 제39권2호
    • /
    • pp.219-224
    • /
    • 2015
  • 본 연구에서는 현무암섬유의 계면을 황산과 과산화수소로 처리하고 섬유 배향각을 $0^{\circ}$, $0^{\circ}/90^{\circ}$, $0^{\circ}/45^{\circ}/-45^{\circ}$로 달리하여 현무암섬유 에폭시 강화 복합재료의 기계적 특성에 미치는 영향에 대해서 살펴보았다. 기계적 특성은 층간 전단강도(ILSS)와 파괴인성 요소 중 임계응력세기인자($K_{IC}$) 측정을 통하여 고찰하였으며, 섬유의 표면미세구조 변화와 복합재료의 파단면은 주사전자현미경(SEM)으로 관찰하였다. 또한 섬유표면에 계면처리의 여부를 확인하기 위하여 적외선 분광법(FTIR)과 X-선 광전자 분광법(XPS)을 분석하였다. 실험결과 계면처리한 섬유 표면의 -OH 기(hydroxyl)가 증가됨을 확인하였다. 계면처리한 후의 기계적 특성이 계면처리 전의 기계적 특성보다 약 ~100% 증가하였다. 이러한 결과는 표면처리에 의해 섬유와 에폭시 수지 매트릭스 사이의 계면결합력을 증가시킨 것으로 판단된다.

A comprehensively overall track-bridge interaction study on multi-span simply supported beam bridges with longitudinal continuous ballastless slab track

  • Su, Miao;Yang, Yiyun;Pan, Rensheng
    • Structural Engineering and Mechanics
    • /
    • 제78권2호
    • /
    • pp.163-174
    • /
    • 2021
  • Track-bridge interaction has become an essential part in the design of bridges and rails in terms of modern railways. As a unique ballastless slab track, the longitudinal continuous slab track (LCST) or referred to as the China railway track system Type-II (CRTS II) slab track, demonstrates a complex force mechanism. Therefore, a comprehensive track-bridge interaction study between multi-span simply supported beam bridges and the LCST is presented in this work. In specific, we have developed an integrated finite element model to investigate the overall interaction effects of the LCST-bridge system subjected to the actions of temperature changes, traffic loads, and braking forces. In that place, the deformation patterns of the track and bridge, and the distributions of longitudinal forces and the interfacial shear stress are studied. Our results show that the additional rail stress has been reduced under various loads and the rail's deformation has become much smoother after the transition of the two continuous structural layers of the LCST. However, the influence of the temperature difference of bridges is significant and cannot be ignored as this action can bend the bridge like the traffic load. The uniform temperature change causes the tensile stress of the concrete track structure and further induce cracks in them. Additionally, the influences of the friction coefficient of the sliding layer and the interfacial bond characteristics on the LCST's performance are discussed. The systematic study presented in this work may have some potential impacts on the understanding of the overall mechanical behavior of the LCST-bridge system.

치과용 도재의 균열전파 특성과 도재 -금속간의 응력분석 (AN EVALUATION OF THE CRACK PROPAGATION CHARACTERISTICS OF PORCELAIN AND THE BOND STRESS OF CERAMO-METAL SYSTEM)

  • 박주미;배태성;송광엽;박찬운
    • 대한치과보철학회지
    • /
    • 제32권1호
    • /
    • pp.47-76
    • /
    • 1994
  • This study was carried out to evaluate the effect of the crack propagation characteristics and bond stress of ceramo-metal system. In order to characterize the crack propagation, the static crack propagation stored in $37^{\circ}C$ distilled water of two commerical porcelains and the dynamic crack propagation under cyclic flexure load of ceramo-metal system were examined. In order to characterize the bond stress, the shear bond test, the 3-point flexure bond test, and the finite element stress analysis of ceramo-metal system were conducted. The results obtained were as follows : 1. Bulk densities and Young's moduli of opaque porcelains increased with repeated firing. 2. Maximum fracture toughness during 4 firing cycles showed at the group of 4 firing cycles in Ceramco porcelain and 2 firing cycles in Vita porcelain. 3. Shear bond strength and flexure bond strength of Ceramco-Verabond specimen were larger than those of Ceramco-Degudent G specimen (p<0.05). 4. Interfacial stresses under three point flexure bond test were concentrated at the edges of ceramometal system. 5. When a cyclic flexure load was applied, the crack growth rate of porcelain surface of ceramometal specimens was decreased as load cycles increased.

  • PDF

A new 3D interface element for three dimensional finite element analysis of FRP strengthened RC beams

  • Kohnehpooshi, O.;Noorzaei, J.;Jaafar, M.S.;Saifulnaz, M.R.R.
    • Interaction and multiscale mechanics
    • /
    • 제4권4호
    • /
    • pp.257-271
    • /
    • 2011
  • The analysis of interfacial stresses in structural component has been the subject of several investigations but it still requires more effort and studies. In this study a general three-dimensional interface element has been formulated for stress and displacement analyses in the interfacial area between two adjacent plate bending element and brick element. Interface element has 16 nodes with 5 degrees of freedom (DOF) in each node adjacent to plate bending element and 3 DOF in each node adjacent to brick element. The interface element has ability to transfer three translations from each side of interface element and two rotations in the side adjacent to the plate element. Stiffness matrix of this element was formulated and implemented in three-dimensional finite element code. Application of this element to the reinforced concrete (RC) beam strengthened with fiber reinforced polymer (FRP) including variation of deflection, slip between plate and concrete, normal and shear stresses distributions in FRP plates have been verified using experimental and numerical work of strengthened RC beams carried out by some researchers. The results show that this interface element is effective and can be used for structural component with these types of interface elements.

Effect of curing conditions on mode-II debonding between FRP and concrete: A prediction model

  • Jiao, Pengcheng;Soleimani, Sepehr;Xu, Quan;Cai, Lulu;Wang, Yuanhong
    • Computers and Concrete
    • /
    • 제20권6호
    • /
    • pp.635-643
    • /
    • 2017
  • The rehabilitation and strengthening of concrete structures using Fiber-Reinforced Polymer (FRP) materials have been widely investigated. As a priority issue, however, the effect of curing conditions on the bonding behavior between FRP and concrete structures is still elusive. This study aims at developing a prediction model to accurately capture the mode-II interfacial debonding between FRP strips and concrete under different curing conditions. Single shear debonding experiments were conducted on FRP-concrete samples with respect to different curing time t and temperatures T. The J-integral formulation and constrained least square minimization are carried out to calibrate the parameters, i.e., the maximum slip $\bar{s}$ and stretch factor n. The prediction model is developed based on the cohesive model and Arrhenius relationship. The experimental data are then analyzed using the proposed model to predict the debonding between FRP and concrete, i.e., the interfacial shear stress-slip relationship. A Finite Element (FE) model is developed to validate the theoretical predictions. Satisfactory agreements are obtained. The prediction model can be used to accurately capture the bonding performance of FRP-concrete structures.

Anisotropic, non-uniform misfit strain in a thin film bonded on a plate substrate

  • Huang, Y.;Ngo, D.;Feng, X.;Rosakis, A.J.
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.123-142
    • /
    • 2008
  • Current methodologies used for the inference of thin film stresses through curvature measurements are strictly restricted to stress and curvature states which are assumed to remain uniform over the entire film/substrate system. These methodologies have recently been extended to non-uniform stress and curvature states for the thin film subject to non-uniform, isotropic misfit strains. In this paper we study the same thin film/substrate system but subject to non-uniform, anisotropic misfit strains. The film stresses and system curvatures are both obtained in terms of the non-uniform, anisotropic misfit strains. For arbitrarily non-uniform, anisotropic misfit strains, it is shown that a direct relation between film stresses and system curvatures cannot be established. However, such a relation exists for uniform or linear anisotropic misfit strains, or for the average film stresses and average system curvatures when the anisotropic misfit strains are arbitrarily non-uniform.