• Title/Summary/Keyword: Interfacial material

Search Result 571, Processing Time 0.024 seconds

Effect of Degree of Interfacial Interlinking on Adhesive Strength and Fracture Morphology of Rubber Layers (고무층간 가교정도가 접착강도 및 파괴형태에 미치는 영향)

  • Kim, Hyeon-Jae;Kaang, Shin-Young;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.34 no.1
    • /
    • pp.31-44
    • /
    • 1999
  • Interfacial adhesive strength between the fully-crosslinked and partially-crosslinked rubber layers were Investigated at the temperature range of $30{\sim}120^{\circ}C$ for four different rubbers(NR, SBR, EPDM, BIMS). The surfaces of interfacial failure were also investigated using a scanning electron microscopy(SEM). The physical interlinking played a major role in the adhesive strength between the fully-crosslinked rubber layers. When a partially-crosslinked rubber layer was bonded to the fully-crosslinked one, the chemical as well as the physical interlinking affected the adhesive strength. NR showed a "interfacial knotty tearing" pattern, while EPDM showed a typical "cross-hatched" one when the adhesive strength approached to the cohesive tear strength of each material.

  • PDF

Interfacial fracture Energy between Electroless Plated Ni film and Polyimide for Flexible PCB Applications (Flexible PCB용 무전해 도금 Ni 박막/Polyimide 계면파괴에너지 평가)

  • Min, Kyoung-Jin;Park, Sung-Cheol;Lee, Jee-Jeong;Lee, Kyu-Hwan;Lee, Gun-Hwan;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.39-47
    • /
    • 2007
  • It is investigated how KOH and Rthylenediamine(EDA) treatment conditions on Polyimide film surface affect the interfacial fracture energy between electroless plated Ni and Polyimide film by $180^{\circ}$ peel test. Estimated values of interfacial fracture energy were 24.5 g/mm and 33.3 g/mm for the KOH treatment times under 1 and 5 minutes, respectively, while, those were 31.6 g/mm and 22.3 g/mm for EDA treatment times under 1 and 5 minutes, respectively. Interfacial bonding between electroless plated Ni and Polyimide seems to be dominated by chemical bonding effect rather than mechanical interlocking effect. It is found that chemical treatment produces carboxyl and mine functional groups which are closely related the interfacial bonding mechanism. Finally, it is speculated that interfacial fracture energy seems to be controlled by O=C-O bonding near cohesive failure region.

  • PDF

Interface State Control of Amorphous InGaZnO Thin Film Transistor by Surface Treatment of Gate Insulator (게이트 절연막의 표면처리에 의한 비정질 인듐갈륨징크옥사이드 박막트랜지스터의 계면 상태 조절)

  • Kim, Bo-Sul;Kim, Do-Hyung;Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.693-696
    • /
    • 2011
  • Recently, amorphous oxide semiconductors (AOSs) based thin-film transistors (TFTs) have received considerable attention for application in the next generation displays industry. The research trends of AOSs based TFTs investigation have focused on the high device performance. The electrical properties of the TFTs are influenced by trap density. In particular, the threshold voltage ($V_{th}$) and subthreshold swing (SS) essentially depend on the semiconductor/gate-insulator interface trap. In this article, we investigated the effects of Ar plasma-treated $SiO_2$ insulator on the interfacial property and the device performances of amorphous indium gallium zinc oxide (a-IGZO) TFTs. We report on the improvement in interfacial characteristics between a-IGZO channel layer and gate insulator depending on Ar power in plasma process, since the change of treatment power could result in different plasma damage on the interface.

Effect of Desmear Treatment on the Interfacial Bonding Mechanism of Electroless-Plated Cu film on FR-4 Substrate (Desmear 습식 표면 전처리가 무전해 도금된 Cu 박막과 FR-4 기판 사이의 계면 접착 기구에 미치는 영향)

  • Min, Kyoung-Jin;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.625-630
    • /
    • 2009
  • Embedding of active devices in a printed circuit board has increasingly been adopted as a future electronic technology due to its promotion of high density, high speed and high performance. One responsible technology is to embedded active device into a dielectric substrate with a build-up process, for example a chipin-substrate (CiS) structure. In this study, desmear treatment was performed before Cu metallization on an FR-4 surface in order to improve interfacial adhesion between electroless-plated Cu and FR-4 substrate in Cu via structures in CiS systems. Surface analyses using atomic force microscopy and x-ray photoemission spectroscopy were systematically performed to understand the fundamental adhesion mechanism; results were correlated with peel strength measured by a 90o peel test. Interfacial bonding mechanism between electrolessplated Cu and FR-4 substrate seems to be dominated by a chemical bonding effect resulting from the selective activation of chemical bonding between carbon and oxygen through a rearrangement of C-C bonding rather than from a mechanical interlocking effect. In fact, desmear wet treatment could result in extensive degradation of FR-4 cohesive strength when compared to dry surface-treated Cu/FR-4 structures.

Analysis of Propagating Crack Along Interface of Isotropic-Orthotropic Bimaterial by Photoelastic Experiment

  • Lee, K.H.;Shukla, A.;Parameswaran, V.;Chalivendra, V.;Hawong, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.102-107
    • /
    • 2001
  • Interfacial cracks between an isotropic and orthotropic material, subjected to static far field tensile loading are analyzed using the technique of photoelasticity. The fracture parameters are extracted from the full-field isochromatic data and the same are compared with that obtained using boundary collocation method. Dynamic Photoelasticity combined with high-speed digital photography is employed for capturing the isochromatics in the case of propagating interfacial cracks. The normalized stress intensity factors for static crack is greater when $\alpha=90^{\circ}C$ (fibers perpendicular to the interface) than when $\alpha=0^{\circ}C$ (fiber parallel to the interface) and those when $\alpha=90^{\circ}C$ are similar to ones of isotropic material. The dynamic stress intensity factors for interfacial propagating crack are greater when $\alpha=0^{\circ}C$ than $\alpha=90^{\circ}C$. The relationship between complex dynamic stress intensity factor $|K_D|$ and crack speed C is similar to that for isotropic homogeneous materials, the rate of increase of energy release rate G or $|K_D|$ with crack speed is not as drastic as that reported for homogeneous materials.

  • PDF

Interfacial Electronic Structure of Bathocuproine and Al: Theoretical Study and Photoemission Spectroscopy

  • Lee, Jeihyun;Kim, Hyein;Shin, Dongguen;Lee, Younjoo;Park, Soohyung;Yoo, Jisu;Jeong, Junkyeong;Hyun, Gyeongho;Jeong, Kwangho;Yi, Yeonjin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.169-169
    • /
    • 2014
  • Interfacial electronic structure of bathocuproine and Al was investigated using in-situ photoemission spectroscopy and density functional theory (DFT) calculations. Bathocuproine is used for exciton blocking and electron transport material in organic photovoltaics and Al is typical cathode material. When thin thickness of Al was thermally evaporated on BCP, gap states were observed by ultraviolet photoemission spectroscopy. The closest gap state yielded below 0.3 eV from Fermi level. By x-ray photoemission spectroscopy, interaction of Al with nitrogen of BCP was observed. To understand the origin of gap states, DFT calculation was carried out and gap states was verified with successive calculation of interaction of Al and nitrogen of BCP. Furthermore, emergency of another state above Fermi level was observed. Remarkable reduction of electron injection barrier between Al and BCP, therefore, is possible.

  • PDF

Numerical Analysis of Fracture Behavior in Aged RC Structures (보강된 노후 구조물 파괴거동 예측을 위한 수치해석기법 개발)

  • 신승교;고태호;김문겸;임윤묵
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1031-1036
    • /
    • 2000
  • In this study, a numerical simulation that can effectively predict the strengthening effect of repaired aged RC structures is developed using the axial deformation link elements. In repaired structures, concrete and interface are modeled as quasi-brittle materials. An elastic-perfectly plastic constitutive relationship is introduced for reinforcing bars. Also, a linear-elastic relationship for repair materials such as FRP or CFS. Structural deterioration in terms of corrosion of steel rebar is considered. The interfacial property between steel and concrete which is reduced by corrosion of steel rebar is obtained by comparing numerical results with experimental results of pull out tests. Obtained values are used in repaired reinforced concrete structures under flexural loading conditions. To investigate strengthening effect of the structures repaired with carbon fiber sheet(CFS), repaired and unrepaired RC structures are analyzed numerically. From analysis, rip-off, debonding and rupture failure mechanisms of interface between substrate and CFS can be determined. Finally, strengthening effect according to the variation of interfacial material properties is investigated, and it is shown that interfacial material properties have influence on the mechanical behavior of repaired structure systems Therefore, the developed numerical method using axial deformation link elements can use for determining the strengthening effects and failure mechanism of repaired aged RC structure.

The Problem of Collinear Cracks in a Layered Half-Plane with a Functionally Graded Nonhomogeneous Interfacial Zone (비균질 구배기능 계면영역을 고려한 적층 만무한체의 동일선상 복수균열 해석)

  • Jin, Tae-Eun;Choe, Hyung-Jip;Lee, Kang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1275-1289
    • /
    • 1996
  • The plane elasticity problem of collinear cracks in a layered medium is investigated. The medium is modeled as bonded structure constituted from a surface layer and a semi-infinite substrate. Along the bond line between the two dissimilar homegeneous constituents, it is assumed that as interfacial zone having the functionally graded, nonhomogeneous elastic modulus exists. The layered medium contains three collinear cracks, one in each constituent material oriented perpendicular to the nominal interfaces. The stiffness matrix formulation is utilized and a set of homogeneous conditions relevant to the given problem is readily satisfied. The proposed mixed boundary value problem is then represented in the form of a system of integral equations with Cauchy-type singular kernels. The stress intensity factors are defined from the crack-tip stress fields possessing the standard square-root singular behavior. The resulting values of stress intensity factors mainly address the interactions among the cracks for various crack sizes and material combinations.

Characterization of (La,Sr))$MnO_3/Gd_{0.2}Ce_{0.8}O_{1.9}$ Interface with Citric Acid Contents and Sintering Temperature (시트르산의 양과 소결온도에 따른 (La,Sr)$MnO_3/Gd_{0.2}Ce_{0.8}O_{1.9}$ 계면특성)

  • 윤일영;윤희성;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.18-25
    • /
    • 1998
  • G $d_{0.2}$C $e_{0.8}$ $O_{1.9}$(CGO) for electrolyte and L $a_{0.5}$S $r_{0.5}$Mn $O_3$(LSM50) for cathode in Solid Oxide Fuel Cells(SOFC) were synthesized by citrate process. Specimens were prepared with sintering temperatures at 110$0^{\circ}C$, 120$0^{\circ}C$ and 130$0^{\circ}C$, which were fabricated by slurry coating with citric acid contents. Interfacial resistance was measured between cathode and electrolyte using AC-impedance analyzer. With various citric acid content, the degree of agglomeration for the initial particles changed. Also sintering temperature changed the particle size and the degree of densification of cathode. Factors affecting the interfacial resistance were adherent degree of the electrolyte and cathode, distribution of TPB(three phase boundaries, TPB i.e., electrolyte/electrode/gas phase area) and porosity of cathode. By increasing the sintering temperature, particle size and densification of the cathode were increased. And then, TPB area which occurs catalytic reaction was reduced and so interfacial resistance was increased.sed.sed.d.

  • PDF