• Title/Summary/Keyword: Interfacial Properties

Search Result 1,138, Processing Time 0.031 seconds

Morphology and Rheological Property of PLA/PCL Blend Compatibilized by Electron Beam Irradiation (전자선 조사에 의해 상용화된 PLA/PCL 블렌드의 모폴로지 및 유변학적 성질)

  • Shin, Boo-Young;Cho, Baek-Hee;Hong, Ki-Heon;Kim, Bong-Shik
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.588-595
    • /
    • 2009
  • The aim of this study was to increase compatibility of immiscible PLA/PCL blend by using electron beam irradiation in the presence of glycidyl methacrylate (GMA). The blends of PLA/PCL containing GMA were irradiated at doses of 10, 50 and 100 kGy and then the irradiated samples were characterized by observing morphology and rheological properties. Blends irradiated with 50 and 100 kGy showed greatly improved interfacial adhesion between two phases in the morphology. Complex viscosity of PLA/PCL(9/1) blend irradiated at dose of 100 kGy was about 100 times higher than that of pure PLA. We found that the compatibility of immiscible PLA/PCL could be improved by electron beam irradiation in the presence of GMA from the investigation of morphology and rheology.

Preparation and Characterization of Poly(phenylene sulfide)-Functionalized MWNTs (폴리(페닐렌 설파이드)로 기능화된 다중벽 탄소나노튜브의 제조와 특성분석)

  • Hong, Sung Yeon;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.791-800
    • /
    • 2014
  • 4-Chlorobenzoyl (CB) group-attached multi-walled carbon nanotube (c-MWNT) was prepared via a direct Friedel-Crafts acylation of MWNT with 4-chlorobenzoic acid (CBA) in a $P_2O_5$/poly(phosphoric acid) medium. c-MWNT with a maximum chlorine content of 5.3 wt% (CB group content of 20.9 wt%) was obtained by controlling the amount of CBA during the reaction. Using a self-condensation polymerization of 4-chlorobenzenethiol (CBT) to poly(phenylene sulfide) (PPS), MWNT-g-PPS was prepared by adding c-MWNT of chlorine content of 5.3 wt% during the self-polymerization of CBT and removing homo PPS after polymerization in order to increase the interfacial interaction between PPS and MWNT. Thermal and surface properties of the MWNT-g-PPS were characterized. The results showed that PPS was formed on the surface of c-MWNT by the condensation of c-MWNT and CBT.

Effects of the Post-annealing of Insulator on the Electrical Properties of Metal/Ferroelectric/Insulator/Semiconductor Structure (절연막이 후 열처리가 Metal/Ferroelectric/Insulator/Semiconductor 구조의 전기적 특성에 미치는 영향)

  • 원동진;왕채현;최두진
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.11
    • /
    • pp.1051-1057
    • /
    • 2000
  • TiO$_2$와 CeO$_2$박막을 Si 위에 증착한 후 MOCVD법에 의해 PbTiO$_3$박막을 증착하여 MFIS 구조를 형성하였다. 절연층의 후열처리가 절연층 및 MFIS 구조의 전기적 특성에 미치는 영향을 관찰하기 위해 산소분위기와 $600^{\circ}C$~90$0^{\circ}C$의 온도범위에서 후 열처리를 행하였고, C-V 특성 및 누설전류 특성을 분석하였다. CeO$_2$와 TiO$_2$박막의 유전상수는 증착 직후 6.9와 15였으며, 90$0^{\circ}C$ 열처리를 행한 후 약 4.9와 8.8로 감소하였다. 누설전류밀도 역시 증착 직후 각각 7$\times$$10^{-5}$ A/$ extrm{cm}^2$와 2.5$\times$$10^{-5}$ A/$\textrm{cm}^2$에서 90$0^{\circ}C$ 열처리를 거친 후에 약 4$\times$$10^{-8}$ A/$\textrm{cm}^2$와 4$\times$$10^{-9}$ A/$\textrm{cm}^2$로 감소하였다. Ellipsometry 시뮬레이션을 통해 계산된 계면층의 두께는 90$0^{\circ}C$에서 약 115$\AA$(CeO$_2$) 및 140$\AA$(TiO$_2$)까지 증가하였다. 계면층은 MFIS 구조에서 강유전층에 인가되는 전계를 감소시켜 항전계를 증가시켰고, charge injection을 방지하여 Al/PbTiO$_3$/CeO$_2$(90$0^{\circ}C$, $O_2$)/Si 구조의 경우 $\pm$2 V~$\pm$10 V의 측정범위에서 memory window가 계속 증가하는 것을 보여주었다.

  • PDF

Charge-Discharge Characteristics of Carbonaceous Materials for a Negative Electrode in Lithium-Ion Batteries (리튬이온전직용 카본계부극재료의 충방전 특성)

  • 김정식;박영태;김상열;장영철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.2
    • /
    • pp.69-74
    • /
    • 1999
  • Graphite and carbonaceous materials intercalate and deintercalate Li-ion reversibly into their layered structures. These materials show an excellent capacity for using a negative electrode in Li-ion batteries, because the electrochemical potential of Li-ion intercalated carbon is almost identical with that of lithium metal. Carbon used in this study was obtained by the pyrolysis of petroleum pitch, and heat-treated at the several temperatures between $700^{\circ}C$ and $1300^{\circ}C$. XRD analysis revealed that crystallization of carbon increased with increasing the heat treatment temperature. Charge/discharge properties were studied by a constant-current step at the rate of 0.1C, and the interfacial reaction between the electrolyte and the surface of carbon electrode was studied by cyclic voltammetry. Cell capacities were investigated in terms of the heat treatment temperature and the cycle number. Reversible capacity increased with the heat treatment temperature up to $1000^{\circ}C$, thereafter decreased continuously. Also, charge capacity decreased with the cycle number, while the reversibility improved with it.

  • PDF

The Electrical Properties of Post-Annealing in Neutron-Irradiated 4H-SiC MOSFETs (중성자 조사한 4H-SiC MOSFET의 열처리에 의한 전기적 특성 변화)

  • Lee, Taeseop;An, Jae-In;Kim, So-Mang;Park, Sung-Joon;Cho, Seulki;Choo, Kee-Nam;Cho, Man-Soon;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.198-202
    • /
    • 2018
  • In this work, we have investigated the effect of a 30-min thermal anneal at $550^{\circ}C$ on the electrical characteristics of neutron-irradiated 4H-SiC MOSFETs. Thermal annealing can recover the on/off characteristics of neutron-irradiated 4H-SiC MOSFETs. After thermal annealing, the interface-trap density decreased and the effective mobility increased in terms of the on-characteristics. This finding could be due to the improvement of the interfacial state from thermal annealing and the reduction in Coulomb scattering due to the reduction in interface traps. Additionally, in terms of the off-characteristics, the thermal annealing resulted in the recovery of the breakdown voltage and leakage current. After the thermal annealing, the number of positive trapped charges at the MOSFET interface was decreased.

Effect of Mineral Admixture on Bond between Structural Synthetic Fiber and Latex Modified Cement Mortar under Sulfate Environments (황산염에 노출된 구조용 합성섬유와 라텍스 개질 시멘트 모르타르의 부착특성에 미치는 광물질 혼화재의 효과)

  • Kim, Dong-Hyun;Lee, Jung-Woo;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.25-34
    • /
    • 2012
  • It has been well known that concrete structures exposed to acid and sulfate environments such as sewer etc. show significant decrease in their durability due to chemical attack. Such deleterious acid and sulfate attacks lead to expansion and cracking in concrete, and thus, eventually result in damage to cement mortar by forming expansive hydration products due to the reaction between cement hydration products and acid and sulfate ions. In this study, the effect of fly ash and blast furnace slag on the bond performances of structural synthetic fiber in latex modified cement mortar under sulfate environments. Fly ash and blast furnace slag contents ranging from 0 % to 20 % are used in the mix proportions. The latex modified cement mortar specimens were immersed in fresh water, 8 % sodium sulfate ($Na_2SO_4$) solutions for 28 and 50 days, respectively. Pullout tests are conducted to measure the bond performance of structural synthetic fiber from latex modified cement mortar after sulfate environments exposure. Test results are found that the incorporation of fly ash and blast furnace slag can effectively enhance the PVA fiber-latex modified cement mortar interfacial bond properties (bond behavior, bond strength and interface toughness) after sulfate environments exposure. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results under sulfate environments.

Strain-Hardening Cementitious Composites with Low Viscosity Suitable for Grouting Application (그라우팅에 적합한 점성을 갖는 변형률 경화 시멘트 복합재료)

  • Lee, Bang Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2012
  • This paper presents materials and processing technique to manufacture low viscous strain-hardening cementitious composite which is suitable for structures requiring low viscosity of materials. The micromechanics and fracture mechanics tools coupled with processing techniques were adopted to achieve low viscosity of composites as well as high tensile strain capacity. Optimal volume and length of fibers and interfacial properties between fibers and matrix for composites with tensile strength of 2~3MPa were determined on the basis of the micromechanical analysis and the steady-state cracking theory. Then six mixtures were determined and the experiment was carried out to evaluate the viscosity and uniaxial tensile performance of those. From the test results, it is verified that the strain-hardening cementitious composite with low viscosity suitable for grouting applications in fresh state as well as high ductility over 1.5% in hardened state can be feasible.

Thermal and Electrical Properties of Poly(vinylidenefluoride-hexafluoropropylene)-based Gel-Electrolytes (Poly(vinylidenefluoride-hexafluoropropylene)계 겔-전해질의 열적, 전기적 특성)

  • 김영완;최병구;안순호
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.382-388
    • /
    • 2000
  • Polymer electrolyte films consisting of poly(vinylidenefluoride-hexafluoropropylene) (PVdF-HFP), LiClO$_3$ and a mixture of ethylene carbonate (EC) and ${\gamma}$-butyrolactone (GBL) were examined in order to obtain the best compromise between high ionic conductivity, homogeniety, dimensional and electrochemical stability. Measurements of ionic conductivity, differential scanning calorimetry and linear sweep voltammetry have been carried out for various compositions. The highest conductivity of 3.8$\times$10$^{-3}$ S$cm^{-1}$ / at 3$0^{\circ}C$ were obtained for a film of 30(PVdF-HFP)+7.8LiClO$_4$+62.2EC/GBL. From the DSC study, it has been found that the PVdF-HFP gels are stable up to 10$0^{\circ}C$, and the salt lowers the melting temperature of crystalline part of PVdF by interacting sensitively with polymer segments. When Lithium metal is in contact with the gel films, it tends to undergo corrosion and the reaction products accumulate resulting in the formation of a passive film on Li electrode. As the aging time progresses, the interfacial resistance increases continuously. Anodic stability is measured to extend up to about 4.5 V vs. Li.

  • PDF

Improvement in the bias stability of zinc oxide thin-film transistors using an $O_2$ plasma-treated silicon nitride insulator

  • Kim, Ung-Seon;Mun, Yeon-Geon;Gwon, Tae-Seok;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.180-180
    • /
    • 2010
  • Thin film transistors (TFTs) based on oxide semiconductors have emerged as a promising technology, particularly for active-matrix TFT-based backplanes. Currently, an amorphous oxide semiconductor, such as InGaZnO, has been adopted as the channel layer due to its higher electron mobility. However, accurate and repeatable control of this complex material in mass production is not easy. Therefore, simpler polycrystalline materials, such as ZnO and $SnO_2$, remain possible candidates as the channel layer. Inparticular, ZnO-based TFTs have attracted considerable attention, because of their superior properties that include wide bandgap (3.37eV), transparency, and high field effect mobility when compared with conventional amorphous silicon and polycrystalline silicon TFTs. There are some technical challenges to overcome to achieve manufacturability of ZnO-based TFTs. One of the problems, the stability of ZnO-based TFTs, is as yet unsolved since ZnO-based TFTs usually contain defects in the ZnO channel layer and deep level defects in the channel/dielectric interface that cause problems in device operation. The quality of the interface between the channel and dielectric plays a crucial role in transistor performance, and several insulators have been reported that reduce the number of defects in the channel and the interfacial charge trap defects. Additionally, ZnO TFTs using a high quality interface fabricated by a two step atomic layer deposition (ALD) process showed improvement in device performance In this study, we report the fabrication of high performance ZnO TFTs with a $Si_3N_4$ gate insulator treated using plasma. The interface treatment using electron cyclotron resonance (ECR) $O_2$ plasma improves the interface quality by lowering the interface trap density. This process can be easily adapted for industrial applications because the device structure and fabrication process in this paper are compatible with those of a-Si TFTs.

  • PDF

Tungsten oxide interlayer for hole injection in inverted organic light-emitting devices

  • Kim, Yun-Hak;Park, Sun-Mi;Gwon, Sun-Nam;Kim, Jeong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.380-380
    • /
    • 2010
  • Currently, organic light-emitting diodes (OLEDs) have been proven of their readiness for commercialization in terms of lifetime and efficiency. In accordance with emerging new technologies, enhancement of light efficiency and extension of application fields are required. Particularly inverted structures, in which electron injection occurs at bottom and hole injection on top, show crucial advantages due to their easy integration with Si-based driving circuits for active matrix OLED as well as large open area for brighter illumination. In order to get better performance and process reliability, usually a proper buffer layer for carrier injection is needed. In inverted top emission OLED, the buffer layer should protect underlying organic materials against destructive particles during the electrode deposition, in addition to increasing their efficiency by reducing carrier injection barrier. For hole injection layers, there are several requirements for the buffer layer, such as high transparency, high work function, and reasonable electrical conductivity. As a buffer material, a few kinds of transition metal oxides for inverted OLED applications have been successfully utilized aiming at efficient hole injection properties. Among them, we chose 2 nm of $WO_3$ between NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] and Au (or Al) films. The interfacial energy-level alignment and chemical reaction as a function of film coverage have been measured by using in-situ ultraviolet and X-ray photoelectron spectroscopy. It turned out that the $WO_3$ interlayer substantially reduces the hole injection barrier irrespective of the kind of electrode metals. It also avoids direct chemical interaction between NPB and metal atoms. This observation clearly validates the use of $WO_3$ interlayer as hole injection for inverted OLED applications.

  • PDF