Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.4.198

The Electrical Properties of Post-Annealing in Neutron-Irradiated 4H-SiC MOSFETs  

Lee, Taeseop (Department of Electronic Materials Engineering, Kwangwoon University)
An, Jae-In (Department of Electronic Materials Engineering, Kwangwoon University)
Kim, So-Mang (Department of Electronic Materials Engineering, Kwangwoon University)
Park, Sung-Joon (Department of Electronic Materials Engineering, Kwangwoon University)
Cho, Seulki (Department of Electronic Materials Engineering, Kwangwoon University)
Choo, Kee-Nam (Korea Atomic Energy Research Institute)
Cho, Man-Soon (Korea Atomic Energy Research Institute)
Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.4, 2018 , pp. 198-202 More about this Journal
Abstract
In this work, we have investigated the effect of a 30-min thermal anneal at $550^{\circ}C$ on the electrical characteristics of neutron-irradiated 4H-SiC MOSFETs. Thermal annealing can recover the on/off characteristics of neutron-irradiated 4H-SiC MOSFETs. After thermal annealing, the interface-trap density decreased and the effective mobility increased in terms of the on-characteristics. This finding could be due to the improvement of the interfacial state from thermal annealing and the reduction in Coulomb scattering due to the reduction in interface traps. Additionally, in terms of the off-characteristics, the thermal annealing resulted in the recovery of the breakdown voltage and leakage current. After the thermal annealing, the number of positive trapped charges at the MOSFET interface was decreased.
Keywords
4H-SiC; Neutron irradiation; Thermal annealing; DMOSFET;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys., 76, 1363 (1994). [DOI: https://doi.org/10.1063/1.358463]   DOI
2 L. A. Franks, B. A. Brunett, R. W. Olsen, D. S. Walsh, G. Vizkelethy, J. I. Trombka, B. L. Doyle, and P. B. James, Nucl. Instrum. Methods Phys. Res., Sect. A, 428, 95 (1999). [DOI: https://doi.org/10.1016/S0168-9002(98)01585-X]   DOI
3 R. C. Baumann, IEEE Trans. Device Mater. Reliab., 5, 305 (2005). [DOI: https://doi.org/10.1109/tdmr.2005.853449]   DOI
4 N. Seifert, B. Gill, K. Foley, and P. Relangi, Proc. 2008 IEEE International Reliability Physics Symposium (IEEE, Phoenix, USA, 2008) p. 181.
5 T. R. Oldham and F. B. McLean, IEEE Trans. Nucl. Sci., 50, 483 (2003). [DOI: https://doi.org/10.1109/tns.2003.812927]   DOI
6 T. Heijmen, P. Roche, G. Gasiot, and K. R. Forbes, IEEE Trans. Device Mater. Reliab., 7, 84 (2007). [DOI: http://doi.org/10.1109/TDMR.2007.897517]   DOI
7 P. Jayavel, K. Santhakumar, and J. Kumar, Phys. B, 315, 88 (2002). [DOI: https://doi.org/10.1016/s0921-4526(01)01104-8]   DOI
8 B. M. Wilamowski, Solid-State Electron., 26, 491 (1983). [DOI: https://doi.org/10.1016/0038-1101(83)90106-5]   DOI
9 A. Saha and J. A. Cooper, IEEE Trans. Electron Dev., 54, 2786 (2007). [DOI: https://doi.org/10.1109/ted.2007.904577]   DOI
10 B. J. Baliga, IEEE Electron Device Lett., 5, 194 (1984). [DOI: https://doi.org/10.1109/edl.1984.25884]   DOI
11 J. Vig and J. LeBus, IEEE Trans. Parts, Hybrids, Packag., 12, 365 (1976). [DOI: https://doi.org/10.1109/tphp.1976.1135156]   DOI
12 Y. Suzue, T. Manaka, and M. Iwamoto, Jpn. J. Appl. Phys., 44, 561 (2005). [DOI: https://doi.org/10.1143/jjap.44.561]   DOI
13 M. Tominaga, N. Hirata, and I. Taniguchi, Electrochem. Commun., 7, 1423 (2005). [DOI: https://doi.org/10.1016/j.elecom.2005.09.025]   DOI