• 제목/요약/키워드: Interface temperature

Search Result 2,049, Processing Time 0.032 seconds

Estimation of Thermal Stresses Induced in Polymeric Thin Film Using Boundary Element Methods

  • Lee, Sang-Soon
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.27-33
    • /
    • 2002
  • The residual thermal stresses at the interface corner between the elastic substrate and the viscoelastic thin film due to cooling from cure temperature down to room temperature have been studied. The polymeric thin film was assumed to be thermorheologically simple. The boundary element method was employed to investigate the nature of stresses on the whole interface. Numerical results show that very large stress gradients are present at the interface comer and such stress singularity might lead to edge cracks or delamination.

  • PDF

Boundary element analysis of singular thermal stresses in a unidirectional laminate

  • Lee, Sang Soon;Kim, Beom Shig
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.705-713
    • /
    • 1997
  • The residual thermal stresses at the interface corner between the elastic fiber and the viscoelastic matrix of a two-dimensional unidirectional laminate due to cooling from cure temperature down to room temperature were studied. The matrix material was assumed to be thermorheologically simple. The time-domain boundary element method was employed to investigate the nature of stresses on the interface. Numerical results show that very large stress gradients are present at the interface corner and this stress singularity might lead to local yielding or fiber-matrix debonding.

Temperature Rise Analysis of Sliding Contact Surfaces in Lubrication Considering Elastic Deformation (탄성변형을 고려한 윤활 상태에서 거친 표면의 미끄럼 접촉온도 해석)

  • Cho Yong-Joo;Kim Byoung-Sun;Lee Sang-Don
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.137-143
    • /
    • 2006
  • The sliding contact interface of machine components such as bearings, gears frequently operates in lubrication at the inception of sliding failure under high loads, speed and slip. The surface temperature at the interface of bodies in a sliding contact is one of the most important factors influencing the behavior of machine components. Most surface failure in sliding contact region result from frictional heat generation. However, it is difficult to measure temperature rise experimentally. So the calculation of the surface temperature at a sliding contact interface has long been an interesting and important subject for tribologist. The surface temperature rise is related in contact pressure, sliding speed, material properties and lubrication thickness. Though roughness, load, ect all of the condition, are same, film thickness varies with velocity. In this study, surface temperature rise due to frictional heating in lubrication is calculated with various velocities. Surface film shearing and dry solid asperity contact are used to simulate the change of frictional heat in lubricated contact

Numerical Analysis for Stefan Problem in Mold-Casting with Air-Gap Resistance (주형/주물 접촉면에서의 접촉열저항을 고려한 상변화문제에 관한 연구)

  • 여문수;손병진;이관수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.348-355
    • /
    • 1992
  • Casting structures and properties are determined by the solidification speed in the metal mold. The heat transfer characteristics of the interface between the mold and the casting is one of the major factors that control the solidification speed. According to Sully's research, the thermal resistance exists due to the air-gap formation at the mold-casting interface during the freezing process and the interface heat transfer coefficient is used to describe the degree of it. In this study, one-dimensional Stefan problem with air-gap resistance in the cylindrical geometry is considered and heat transfer characteristics is numerically examined. The temperature distribution and solidification speed are obtained by using the modified variable time step method. And the effects of the major parameters such as mold geometry, thermal conductivity, heat transfer coefficient and initial temperature of casting on the thermal characteristics are investigated.

Thermal Stress Analysis of Drums Brakes by Finite Element Method (유한요소법에 의한 드럼 브레이크의 열응력 해석)

  • Goo, Byeong-Choon;Seo, Jung-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.831-836
    • /
    • 2001
  • In the case of axisymmetric thermal analysis of drum brakes, the distribution of frictional heat produced on the interface and temperature difference between mating frictional faces are very interesting problems to computational researchers. In this paper, heat conduction from the interface to the pad and the drum was modeled by using a thin interface element, so artificial division of the generated frictional heat between pad and drum is not necessary. Temperature difference between mating frictional faces is successfully modeled by using the interface element. The influence of some parameters on tile thermal stress was checked. The analysis was performed by ABAQUS/Standard code.

  • PDF

Thermoelastic Contact Analysis of Drums Brakes by Finite Element Method (유한요소법에 의한 드럼 브레이크의 열탄성 접촉해석)

  • 구병춘;서정원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.173-180
    • /
    • 2001
  • In the case of axisymmetric thermal analysis of drum brakes, the distribution of frictional heat produced on the interface and temperature difference between mating frictional faces are very interesting problems to computational researchers. In the first part, the influence of the s-cam load angles and elastic modulus of the pad on the contact pressure distribution between pad and drum was checked by a three dimensional model. In the second part heat conduction from the interface to the pad and the drum was modeled by using a thin interface element, so artificial division of the generated frictional heat between pad and drum is not necessary. Temperature difference between mating frictional faces is successfully modeled by using the interface element. The influence of some parameters on the thermal distribution is checked. The analysis was performed by ABAQUS/Standard code.

  • PDF

Adhesion Strength of Amorphous Polymer Interfaces by Solvent Welding (Solvent 용접에 의한 무정형 고분자 계면의 접착강도 변화에 관한 연구)

  • 정연호;강두환;강호종
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.23-28
    • /
    • 2000
  • Autoadhesion strength of PS/PS Interfaces in solvent welding was determined as a function of processing conditions by butt joint test. It was verified that the chain mobility and surface roughness at PS/PS interface were enhanced by the applied solvent having a similar solubility parameter as PS and resulted in the dramatic improvement of autoadhesion strength at PS/PS interface. It was found that the mechanism of solvent welding is dependent upon the chain mobility due to the diffusion of solvent to PS interface and the contact area at interface. When the welding temperature is lower than the boiling point of applied solvent, the effect of chain mobility on autoadhesion strength was dominated, while contact area took more important role when welding temperature is above the boiling point of solvent. Autoadhesion strength increased with increasing contact time and contact temperature but :he effect of solvent on autoadhesion strength became smaller.

  • PDF

The Effect of Bonding Condition on Tensile Properties of Diffusion Bonds of Graphite Cast Iron FCD60 to Cr-Mo Steel SCM440 (구상흑연주철 FCD60과 Cr-Mo강 SCM440 확산접합부의 인장성질에 미치는 접합조건의 영향)

  • 송우현;김정길;강정윤
    • Journal of Welding and Joining
    • /
    • v.22 no.1
    • /
    • pp.77-82
    • /
    • 2004
  • The effect of bonding condition on tensile properties of joints diffusion bonded spheroidal graphite cast iron, FCD60 to Cr-Mo steel, SCM 440 was investigated. Diffusion bonding was performed with various temperatures, holding times, pressures and atmospheres. All tensile specimens were fractured at the bonding interface. The tensile strength and elongation was increased with increasing bonding temperature. Especially, tensile strength of joints bonded at 1123K was higher than that of a raw material, FCD60, and tensile strength of joints bonded at 1173K was equal to that of a raw material, SCM440, but elongation of all joints was lower than those of raw materials. There was little the effect of holding time on the tensile properties. In comparison with bonding atmosphere, the difference of tensile strength was not observed, but elongation of joint bonded at vacuum(6.7mPa and 67mPa) was higher than that of Ar gas. Higher the degee of vacuum, elongation increased. Tensile properties of diffusion bonds depended on microstructures of cast iron at the interface and void ratio. Microstructures of cast iron at interface changed with temperature, because decarburizing and interdiffusion at the interface occurs and transformation of austenite-1 ferrite + graphite occurs on the cooling process. The void ratio decreased with increasing temperature, especially, effected on the elongation.

Electrical Characteristics of Metal/n-InGaAs Schottky Contacts Formed at Low Temperature

  • 이홍주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.365-370
    • /
    • 2000
  • Schottky contacts on n-In$\_$0.53//Ga$\_$0.47//As have been made by metal deposition on substrates cooled to a temperature of 77K. The current-voltage and capacitance-voltage characteristics showed that the Schottky diodes formed at low temperature had a much improved barrier height compared to those formed at room temperature. The Schottky barrier height ø$\_$B/ was found to be increased from 0.2eV to 0.6eV with Ag metal. The saturation current density of the low temperature diode was about 4 orders smaller than for the room temperature diode. A current transport mechanism dominated by thermionic emission over the barrier for the low temperature diode was found from current-voltage-temperature measurement. Deep level transient spectroscopy studies exhibited a bulk electron trap at E$\_$c/-0.23eV. The low temperature process appears to reduce metal induced surface damage and may form an MIS (metal-insulator-semiconductor)-like structure at the interface.

  • PDF

Effect of Tension-Test Temperature on Fracture Behavior and Mechanical Properties in STS/Al/Cu Clad Materials (STS/Al/Cu 클래드재의 파괴거동 및 기계적 물성에 미치는 인장시험 온도의 영향)

  • Bae, Dong-Hyun;Choi, Young-Jun;Chung, Won-Sub;Bae, Dong-Su;Cho, Young-Rae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.811-818
    • /
    • 2009
  • In order to meet increasingly complex and rigorous technical specifications, extensive effort has been devoted to fabricate clad materials with multi-layered metal plates. In this study, novel stainless steel/aluminum/copper (STS/Al/Cu) three-ply clad materials were fabricated by a hot rolling process for cookware applications. The effect of the testing temperature on the mechanical properties of the clad materials and on each component metal was investigated during the tensile tests. The interface properties of the clad materials were also examined by optical microscopy (OM) and an electron probe micro-analyzer (EPMA). The best mechanical and interfacial properties for a warm working process were found in a sample annealed at a temperature of $300^{\circ}C$. For the sample annealed at $400^{\circ}C$, the results of the tensile test indicated that interface delamination occurred only in the region of the Al/Cu interfaces. This was due to the formation of the thick and brittle intermetallic compound of $Al_2Cu$ in the Al/Cu interface. In contrast, no interface delamination was observed in the STS/Al interface, most likely due to its strong bond strength.