• Title/Summary/Keyword: Interface resistance

Search Result 894, Processing Time 0.032 seconds

Electrical characteristics of the this film interface of amorphous chalcogenide semiconductor (비정질 칼코게나이드 반도체 박막 경계면의 전기적 특성)

  • 박창엽
    • 전기의세계
    • /
    • v.29 no.2
    • /
    • pp.111-117
    • /
    • 1980
  • Contacts formed by vacuum evaporation of As-Te-Si-Ge chalcogenide glass onto Al metal (99.9999%) are studied by measuring paralle capacitance C(V), Cp(w), resistance R(V), Rp(w), and I-V characteristics. The fact that contact metal alloying produced high-resistance region is confirmed from the measurements of parallel capacitance and resistance. From the I-V characteristics in the pre-switcing region, it is found that electronic conduction and sitching occurs in the vicinity of metal-amorphous semiconductor interface. From the experimental obsevations, it is concuded that the current flow in the thin film is space-charge limited current (SCLC) due to the tunneling of electrons through the energy barriers.

  • PDF

CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases

  • Kim, Jun-Seob;Cho, Da-Hyeong;Park, Myeongseo;Chung, Woo-Jae;Shin, Dongwoo;Ko, Kwan Soo;Kweon, Dae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.394-401
    • /
    • 2016
  • Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) system, a genome editing technology, was shown to be versatile in treating several antibiotic-resistant bacteria. In the present study, we applied the CRISPR/Cas9 technology to kill extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. ESBL bacteria are mostly multidrug resistant (MDR), and have plasmid-mediated antibiotic resistance genes that can be easily transferred to other members of the bacterial community by horizontal gene transfer. To restore sensitivity to antibiotics in these bacteria, we searched for a CRISPR/Cas9 target sequence that was conserved among >1,000 ESBL mutants. There was only one target sequence for each TEM- and SHV-type ESBL, with each of these sequences found in ~200 ESBL strains of each type. Furthermore, we showed that these target sequences can be exploited to re-sensitize MDR cells in which resistance is mediated by genes that are not the target of the CRISPR/Cas9 system, but by genes that are present on the same plasmid as target genes. We believe our Re-Sensitization to Antibiotics from Resistance (ReSAFR) technology, which enhances the practical value of the CRISPR/Cas9 system, will be an effective method of treatment against plasmid-carrying MDR bacteria.

The Evaluation of Crack Propagation in Functionally Graded Materials with Coatings (코팅 경사기능 재료의 균열전파에 관한 평가)

  • Kwon, Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.25-29
    • /
    • 2008
  • Recently, new functionally graded material(FGM) that has a spatial variation in composition and properties is developed because of its good quality. This material yields the demands for resistance to corrosion and high temperature in turbine blade, wear resistance as in gears and high strength machine parts. Especially coating treatment in FGM surface brings forth a mechanical weak at the interface due to discontinuous stress resulting from a steep material change. It often, leads cracks or spallation in a coating area around an interface. The behavior of propagation cracks in FGMs was here investigated. The interface stresses were reduced because of graded material properties. Also graded material parameter with exponential equation was founded to influence the stress intensity factor. And the resistance curve with FGM coating was slightly increased.

Measurement of thermal contact resistance at Cu-Cu interface

  • Kim, Myung Su;Choi, Yeon Suk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.48-51
    • /
    • 2013
  • The thermal contact resistance (TCR) is one of the important components in the cryogenic systems. Especially, cryogenic measurement devices using a cryocooler can be affected by TCR because the systems have to consist of several metal components in contact with each other for heat transferring to the specimen without cryogen. Therefore, accurate measurement and understanding of TCR is necessary for the design of cryogenic measurement device using a cryocooler. The TCR occurs at the interface between metals and it can be affected by variable factors, such as roughness of metal surface, contact area and contact pressure. In this study, we designed TCR measurement system at various temperatures using a cryocooler as a heat sink and used steady state method to measure the TCR between metals. The copper is selected as a specimen in the experiment because it is widely used as a heat transfer medium in the cryogenic measurement devices. The TCR between Cu and Cu is measured for various temperatures and contact pressures. The effect of the interfacial materials on the TCR is also investigated.

The Effect of Frit on Bonding Behavior of Low-firing-substate and Cu Conductor (프릿트 첨가에 따른 저온소성 기판과 Cu와의 접합 거동에 관한 연구)

  • 박정현;이상진
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.601-607
    • /
    • 1995
  • The bond strength between the low-firing-substrate and Cu conductor depended on the softening point and the amount of frit added to the metal paste. The addition of 3 wt% frit (softening point: 68$0^{\circ}C$) to the metal paste resulted in the improvement of bond strength, which was approximately 3 times higher (3kg/$\textrm{mm}^2$) than that of non frit condition. It was also found that fracture surface shifted to the ceramic substrate in the interface region. These phenomena were attributed to the frit migration into the metal-ceramic interface. It was thought that the migration of glass frit occurred extensively when the softening point of glass firt was 68$0^{\circ}C$. The sheet resistance of Cu conductor remained constant by the addition of 4 wt% frit regardless of softening point of frit. For all samples with more than 4 wt% frit, the sheet resistance increased abruptly.

  • PDF

Influence of Series Resistance and Interface State Density on Electrical Characteristics of Ru/Ni/n-GaN Schottky structure

  • Reddy, M. Siva Pratap;Kwon, Mi-Kyung;Kang, Hee-Sung;Kim, Dong-Seok;Lee, Jung-Hee;Reddy, V. Rajagopal;Jang, Ja-Soon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.492-499
    • /
    • 2013
  • We have investigated the electrical properties of Ru/Ni/n-GaN Schottky structure using current-voltage (I-V) and capacitance-voltage (C-V) measurements at room temperature. The barrier height (${\Phi}_{bo}$) and ideality factor (n) of Ru/Ni/n-GaN Schottky structure are found to be 0.66 eV and 1.44, respectively. The ${\Phi}_{bo}$ and the series resistance ($R_S$) obtained from Cheung's method are compared with modified Norde's method, and it is seen that there is a good agreement with each other. The energy distribution of interface state density ($N_{SS}$) is determined from the I-V measurements by taking into account the bias dependence of the effective barrier height. Further, the interface state density $N_{SS}$ as determined by Terman's method is found to be $2.14{\times}10^{12}\;cm^{-2}\;eV^{-1}$ for the Ru/Ni/n-GaN diode. Results show that the interface state density and series resistance has a significant effect on the electrical characteristics of studied diode.

Analysis of the Impact of Alignment Errors on Electrical Signal Transmission Efficiency in Interconnect and Bonding Structures (배선 및 본딩 접합 구조에서 정렬 오차에 따른 전기 신호 전달 효율 변화에 대한 분석)

  • Seung Hwan O;Seul Ki Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.3
    • /
    • pp.38-41
    • /
    • 2024
  • In semiconductor manufacturing, the alignment process is fundamental to all manufacturing steps, and alignment errors are inevitably introduced. These alignment errors can lead to issues such as increased resistance, signal delay, and degradation. This study systematically analyzes the changes in the electrical characteristics of the bonding interface when alignment errors occur in metal interconnect and bonding structures. The results show that current density tends to concentrate at the edges of the bonding interface, with the middle part of the interface being particularly vulnerable. As alignment errors increase, the current path redistributes, causing previously concentrated current areas to disappear and an effect similar to an increase in contact area, resulting in a decrease in resistance in certain vulnerable parts. These findings suggest that proposing structural improvements to eliminate the vulnerable parts of the bonding interface could lead to interconnect with significantly improved resistance performance compared to existing structure. This study clarifies the impact of alignment errors on electrical characteristics, which is expected to play a crucial role in optimizing the electrical performance of semiconductor devices and enhancing the efficiency of the manufacturing process.

Analysis on Thermal Boundary Resistance at the Interfaces in Superlattices by Using the Molecular Dynamics (분자동역학법을 이용한 초격자 내부의 경계면 열저항의 해석)

  • Choi, Soon-Ho;lee, Jung-Hye;Choi, Hyun-Kue;Yoon, Seok-Hun;Oh, Cheol;Kim, Myoung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1382-1387
    • /
    • 2004
  • From the viewpoint of a macro state, there is no thermal boundary resistance (TBR) at an interface if both surfaces at an interface are perfectly contacted. However, recent molecular dynamics (MD) studies reported that there still exists the TDR at the interface in an ideal epitaxial superlttice. Our previous studies suggested the model to predict the TBR not only quantitatively also qualitatively in superlattices. The suggested model was based on the classical theory of a wave reflection, and provided highly satisfactory results for an engineering purpose. However, it was not the complete model because our previous model was derived by considering only the effects from a mass ratio and a potential ratio of two species. The interaction of two species presented by the Lennard-Jones (L-J) potential is governed by the mutual ratio of the masses, the potential well depths, and the diameters. In this study, we performed the preliminary simulations to investigate the effect resulting from the diameter ratio of two species for the completion of our model and confirmed that it was also a ruling factor to the TBR at an interface in superlattices.

  • PDF

Soil and ribbed concrete slab interface modeling using large shear box and 3D FEM

  • Qian, Jian-Gu;Gao, Qian;Xue, Jian-feng;Chen, Hong-Wei;Huang, Mao-Song
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.295-312
    • /
    • 2017
  • Cast in situ and grouted concrete helical piles with 150-200 mm diameter half cylindrical ribs have become an economical and effective choice in Shanghai, China for uplift piles in deep soft soils. Though this type of pile has been successful used in practice, the reinforcing mechanism and the contribution of the ribs to the total resistance is not clear, and there is no clear guideline for the design of such piles. To study the inclusion of ribs to the contribution of shear resistance, the shear behaviour between silty sand and concrete slabs with parallel ribs at different spacing and angles were tested in a large direct shear box ($600mm{\times}400mm{\times}200mm$). The front panels of the shear box are detachable to observe the soil deformation after the test. The tests were modelled with three-dimensional finite element method in ABAQUS. It was found that, passive zones can be developed ahead of the ribs to form undulated failure surfaces. The shear resistance and failure mode are affected by the ratio of rib spacing to rib diameter. Based on the shape and continuity of the failure zones at the interface, the failure modes at the interface can be classified as "punching", "local" or "general" shear failure respectively. With the inclusion of the ribs, the pull out resistance can increase up to 17%. The optimum rib spacing to rib diameter ratio was found to be around 7 based on the observed experimental results and the numerical modelling.

The Molecular Structures of Poly(3-hexylthiophene) Films Determine the Contact Properties at the Electrode/Semiconductor Interface

  • Park, Yeong Don
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2277-2280
    • /
    • 2014
  • The contact properties between gold and poly(3-hexylthiophene) (P3HT) films having either of two distinct molecular orientations and orderings were investigated. Thermal treatment increased the molecular ordering of P3HT and remarkably reduced the contact resistance at the electrode/semiconductor interface, which enhanced the electrical performance. This phenomenon was understood in terms of a small degree of metal penetration into the P3HT film as a result of the thermal treatment, which formed a sharp interface at the contact interface between the gold electrode and the organic semiconductor.