• Title/Summary/Keyword: Interface reaction

Search Result 699, Processing Time 0.028 seconds

Optimization of fabrication and process conditions for highly uniform and durable cobalt oxide electrodes for anion exchange membrane water electrolysis (음이온 교환막 수전해 적용을 위한 고균일 고내구 코발트 산화물 전극의 제조 및 공정 조건 최적화)

  • Hoseok Lee;Shin-Woo Myeong;Jun-young Park;Eon-ju Park;Sungjun Heo;Nam-In Kim;Jae-hun Lee;Jae-hun Lee;Jae-Yeop Jeong;Song Jin;Jooyoung Lee;Sang Ho Lee;Chiho Kim;Sung Mook Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.412-419
    • /
    • 2023
  • Anion exchange membrane electrolysis is considered a promising next-generation hydrogen production technology that can produce low-cost, clean hydrogen. However, anion exchange membrane electrolysis technology is in its early stages of development and requires intensive research on electrodes, which are a key component of the catalyst-system interface. In this study, we optimized the pressure conditions of the hot-pressing process to manufacture cobalt oxide electrodes for the development of a high uniformity and high adhesion electrode production process for the oxygen evolution reaction. As the pressure increased, the reduction of pores within the electrode and increased densification of catalytic particles led to the formation of a uniform electrode surface. The cobalt oxide electrode optimized for pressure conditions exhibited improved catalytic activity and durability. The optimized electrode was used as the anode in an AEMWE single cell, exhibiting a current density of 1.53 A cm-2 at a cell voltage of 1.85 V. In a durability test conducted for 100 h at a constant current density of 500 mA cm-2, it demonstrated excellent durability with a low degradation rate of 15.9 mV kh-1, maintaining 99% of its initial performance.

Fabrication and Characterization of Cr Alloy for Metallic Interconnect of Solid Oxide Fuel Cell (고체 산화물 연료전지용 Cr계 금속 연결재 제조 및 특성 연구)

  • Song, Rak-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.58-65
    • /
    • 2005
  • The $LaCrO_3$-dispersed Cr alloys for metallic interconnect of solid oxide fuel cell were prepared as a function of $LaCrO_3$ content in the range of 5 to 25 vol.% and were sintered at 1500$^{\circ}C$ under an Ar atmosphere with 5 vol.% $H_2$. The sintering and oxidation behaviors of these alloys were examined. The alloys indicated a good sinterability above 95% relative density at a given sintering condition, and their sintering densities is independent on $LaCrO_3$ content. The $LaCrO_3$ particles of the sintered alloys were concentrated on interfaces of Cr particles, and the size of the Cr particles increased with decreasing $LaCrO_3$ content, which is caused by inhibited grain growth of Cr particle by $LaCrO_3$ particle. The oxidation test showed all $LaCrO_3$-dispersed Cr alloys have good oxidation resistance as compared with pure Cr, which is attributed to presence of $LaCrO_3$ at the interface at which the oxidation reaction occurs rapidly. The Cr alloys with about 15 vol.% $LaCrO_3$ are very resistant to oxidation.

MOLECULAR BIOLOGY IN DENTAL IMPLANT (치과 임플란트에서의 분자생물학적 연구)

  • Jee, Yu-Jin;Ryu, Dong-Mok;Lee, Deok-Won
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.6
    • /
    • pp.616-621
    • /
    • 2008
  • Osseointegration is a result of bone formation and bone regeneration processes, which takes place at the interface between bone and implant, and it indicates a rigid fixation that can be stably maintained while functional loading is applied inside the oral cavity as well as after implant placement. Although many researches were carried out about osseointegration mechanism, but cellular and molecular events have not been clarified. With recent development of molecular biology, some researches have examined biological determinants, such as cytokine, growth factors, bone matrix proteins, during osseointegration between bone and implant surface, other researches attempted to study the ways to increase bone formation by adhering protein to implant surface or by inserting growth factors during implant placement. Cellular research on the reaction of osteoblast especially to surface morphology (e.g. increased roughness) has been carried out and found that the surface roughness of titanium implant affects the growth of osteoblast, cytokine formation and mineralization. While molecular biological research in dental implant is burgeoning. Yet, its results are insignificant. We have been studying the roles of growth factors during osseointegration, comparing different manifestations of growth factors by studying the effect of osseointegration that varied by implant surface. Of many growth factors, $TGF-{\beta}$, IGF-I, BMP2, and BMP4, which plays a significant role in bone formation, were selected, and examined if these growth factors are manifested during osseointegration. The purpose of this article is to present result of our researches and encourage molecular researches in dental implant.

A Study on Countermeasure for CCN Interest Flooding Attack (콘텐츠 중심 네트워킹 환경에서의 Interest Packet Flooding 대응 연구)

  • Kim, DaeYoub
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.8
    • /
    • pp.954-961
    • /
    • 2013
  • To enhance the efficiency of network, content-centric networking (CCN), one of future Internet architectures, allows network nodes to temporally cache transmitted contents and then to directly respond to request messages which are relevant to previously cached contents. Also, since CCN uses a hierarchical content-name, not a host identity like source/destination IP address, for request/response packet routing and CCN request message does not include requester's information for privacy protection, contents-providers/ network nodes can not identify practical requesters sending request messages. So to send back relevant contents, network nodes in CCN records both a request message and its incoming interfaces on Pending Interest Table (PIT). Then the devices refer PIT to return back a response message. If PIT is exhausted, the device can not normally handle request/response messages anymore. Hence, it is needed to detect/react attack to exhaust PIT. Hence, in this paper, we propose improved detection/reaction schemes against attacks to exhaust PIT. In practice, for fine-grained control, this proposal is applied to each incoming interface. Also, we propose the message framework to control attack traffic and evaluate the performance of our proposal.

Science High School Students' Understandings on Chemical Cells : In Relation to Chemical Equilibrium from the Microscopic Viewpoint at Molecular Level (과학고등학교 학생의 화학 전지에 대한 이해 분석: 분자적 수준의 미시적 관점에서 화학 평형과 연계하여)

  • Kim, Hyun-Jung;Hong, Hun-Gi
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.6
    • /
    • pp.731-738
    • /
    • 2012
  • The purpose of this study is to analyze the understandings of science high school students on the conception of chemical cell in relation to chemical equilibrium from the microscopic viewpoint at molecular level through questionnaires and follow-up interviews. The results show that they have high understandings on the chemical equilibrium states in the electrochemical cell and on the redox reaction taking place simultaneously when a metal electrode is immersed in the metal ion solution. However, they do not fully comprehend the development of electrical potential difference, electron movement, electrode potential measurement in the half-cells, and calculation of the net cell voltage between anode and cathode in the chemical cell because of difficulties in the microscopic understanding the interaction on the interface at the electrode and the electrolyte solution.

Properties of Organic Light Emitting Diode with ITO/MEH-PPV/Al Structure on Heating Temperatures (열처리 온도에 따른 ITO/MEH-PPV/Al 구조의 유기 발광다이오드의 특성연구)

  • 조중연;장호정
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.35-38
    • /
    • 2003
  • Polymer light emitting diode (PLED) with an ITO/MEH-PPV/Al structure were prepared by spin coating method on the ITO (indium tin oxide)/glass substrates, using poly(2-methoxy-5-(2-ethylhexoxy)-1,4-phenylenevinylene (MEH-PPV) as the light emitting material. The dependence of heat treatment on the electrical and optical properties for the prepared PLED samples were investigated. The luminance decreased greatly from 630 cd/$\m^2$ to 280 cd/$\m^2$ at 10V input voltage as the heating temperature increased from $65^{\circ}C$ to $170^{\circ}C$. In addition, the luminance efficiency was found to be about 2 lm/W for the sample heat treated at $65^{\circ}C$. These results may be related to the interface roughness and/or the formation of an insulation layer, which is caused by the reaction between electrode and MEH-PPV organic luminescent film layer.

  • PDF

Probing Organic Ligands and their Binding Schemes on Nanocrystals by Mass Spectrometric and FT-IR Spectroscopic Imaging

  • Son, Jin Gyeong;Choi, Eunjin;Piao, Yuanzhe;Han, Sang Woo;Lee, Tae Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.355-355
    • /
    • 2016
  • There has been an explosive development of nanocrystal (NC) synthesis and application due to their composition-dependent specific properties. Despite the composition, shape, and size of NCs foremost determine their physicochemical properties, the surface state and molecule conjugation also drastically change their characteristics. To make practical use of NCs, it is a prerequisite to understand the NC surface state and the degree to which they have been modified because the reaction occurs on the interface between the NCs and the surrounding medium. We report in here an analysis method to identify conjugated ligands and their binding states on semiconductor nanocrystals based on their molecular information. Surface science techniques, such as time-of-flight secondary-ion mass spectrometry (ToF-SIMS) and FT-IR spectroscopy, are adopted based on the micro-aggregated sampling method. Typical trioctylphosphine oxide-based synthesis methods of CdSe/ZnS quantum dots (QDs) have been criticized because of the peculiar effects of impurities on the synthesis processes. Since the ToF-SIMS technique provides molecular composition evidence on the existence of certain ligands, we were able to clearly identify the n-octylphosphonic acid (OPA) as a surface ligand on CdSe/ZnS QDs. Furthermore, the complementary use of the ToF-SIMS technique with the FT-IR technique could reveals the OPA ligands' binding state as bidentate complexes.

  • PDF

Effects of the Brazing Bonding between Al2O3 and STS304 with an Ion Beams (이온빔을 이용한 STS304와 알루미나 브레이징 접합효과)

  • Park, Il-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8679-8683
    • /
    • 2015
  • Using a surface modification technique, ion beam assisted deposition (IBAD) of Ti thin film it becomes possible to prepare an active ceramic surface to braze $Al_2O_3$-STS304 with conventional Ag-Cu eutectic composition filler metal. Researches on bonding formations at interfaces of ceramic joints were mainly related on the development of filler metals to ceramic, the process parameters, and clarifications of reaction products. From the results, the reactive brazing is a very convenient technique compared to the conventional Mn-Mo method. However melting point of reactive filler is still higher than that of Ag-Cu eutectic and it forms the brittle inter metallic compound. Recently several new approaches are introduced to overcome the main shortcomings of the reactive metal brazing in ceramic-metal, metal vapor vacuum arc ion source was introduced to implant the reactive element directly into the ceramics surface, and sputter deposition with sputter etching for the deposition of active material.

The Thermal Stability and Elevated Temperature Mechanical Properties of Spray-Deposited $SiC_P$/Al-11.7Fe-1.3V-1.7Si Composite

  • Hao, L.;He, Y.Q.;Wang, Na;Chen, Z.H.;Chen, Z.G.;Yan, H.G.;Xu, Z.K.
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.351-364
    • /
    • 2009
  • The thermal stability and elevated temperature mechanical properties of $SiC_P$/Al-11.7Fe-1.3V-1.7Si (Al-11.7Fe-1.3V-1.7Si reinforced with SiC particulates) composites sheets prepared by spray deposition (SD) $\rightarrow$ hot pressing $\rightarrow$ rolling process were investigated. The experimental results showed that the composite possessed high ${\sigma}_b$ (elevated temperature tensile strength), for instance, ${\sigma}_b$ was 315.8 MPa, which was tested at $315^{\circ}C$, meanwhile the figure was 232.6 MPa tested at $400^{\circ}C$, and the elongations were 2.5% and 1.4%, respectively. Furthermore, the composite sheets exhibited excellent thermal stability: the hardness showed no significant decline after annealing at $550^{\circ}C$ for 200 h or at $600^{\circ}C$ for 10 h. The good elevated temperature mechanical properties and excellent thermal stability should mainly be attributed to the formation of spherical ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase particulates in the aluminum matrix. Furthermore, the addition of SiC particles into the alloy is another important factor, which the following properties are responsible for. The resultant Si of the reaction between Al matrix and SiC particles diffused into Al matrix can stabilize ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase; in addition, the interface (Si layer) improved the wettability of Al/$SiC_P$, hence, elevated the bonding between them. Furthermore, the fine $Al_4C_3$ phase also strengthened the matrix as a dispersion-strengthened phase. Meanwhile, load is transferred from Al matrix to SiC particles, which increased the cooling rate of the melt droplets and improved the solution strengthening and dispersion strengthening.

Electrical Properties of Solar Cells With the Reactivity of Ag pastes and Si Wafer (Ag paste와 실리콘 웨이퍼의 반응성에 따른 태양전지의 전기적 성질)

  • Kim, Dong-Sun;Hwang, Seong-Jin;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.54-54
    • /
    • 2009
  • Ag thick film has been used for electrode materials with the excellent conductivity. Ag electrode is used in screen-printed silicon solar cells as a electrode material. Compared to photolithography and buried-contact technology, screen-printing technology has the merit of fabricating low-priced cells and enormous cells in a few hours. Ag paste consists of Ag powders, vehicles and additives such as frits, metal powders (Pb, Bi, Zn). Frits accelerate the sintering of Ag powders and induce the connection between Ag electrode and Si wafer. Thermophysical properties of frits and reactions among Ag, frits and Si influence on cell performance. In this study, Ag pastes were fabricated with adding different kinds of frits. After Ag pastes were printed on silicon wafer by screen-printing technology, the cells were fired using a belt furnace. The cell parameters were measured by light I-V to determine the short-circuit current, open-circuit voltage, FF and cell efficiency. In order to study the relationship between the reactivity of Ag, frit, Si and the electrical properties of cells, the reaction of frits and Si wafer on was studied with thermal properties of frits. The interface structure between Ag electrode and Si wafer were also measured for understanding the reactivity of Ag, frit and Si wafer. The excessive reactivity of Ag, frit and Si wafer certainly degraded the electrical properties of cells. These preliminary studies suggest that reactions among Ag, frits and Si wafer should optimally be controlled for cell performances.

  • PDF