• 제목/요약/키워드: Interface reaction

검색결과 697건 처리시간 0.022초

EXPERIMENTAL STUDY ON LASER AND HOT AIR REFLOW SOLDERING OF

  • Tian, Yanhong;Wang, Chunqing
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.469-474
    • /
    • 2002
  • Laser and hot air reflow soldering of PBGA solder ball was investigated. Experimental results showed that surface quality and shear strength of solder bumps reflowed by laser was superior than the solder bumps reflowed by hot air, and the microstructure inside the solder bumps reflowed by laser was much finer. Analysis on interfacial reaction showed that eutectic solder reacted with Au/Ni/Cu pad shortly after the solder was melted. Interface of solder bump reflowed by laser consists of a continuous AuSn$_4$ layer and remnant Au element. Needle-like AuSn$_4$ grew sidewise from interface, and then spread out to the entire interface region. A thin layer of Ni$_3$Sn$_4$ intermetallic compound was found at the interface of solder bump reflowed by hot air, AuSn$_4$ particles distributed inside the whole solder bump randomly. It is the combination effect of the continuous AuSn$_4$ layer and finer eutectic microstructure inside the solder bump reflowed by laser that resulted in higher shear strength.

  • PDF

TiNi 형상기억합금을 이용한 복합재료의 제조 및 계면 특성 (Fabrication and Interface Properties of TiNi/6061Al Composite)

  • 김순국;이준희
    • 한국재료학회지
    • /
    • 제9권4호
    • /
    • pp.419-427
    • /
    • 1999
  • TiNi shape memory alloy was shape memory heat-treated and investigated its mechanical properties with the variation of prestrain. Also 6061 Al matrix composites with TiNi shape memory alloy fiber as reinforcement have been fabricated by Permanent Mold Casting to investigate the microstructures and interface properties. Yield stress of TiNi wire was the most high in the case of before heat-treatment and then decreased as increasing heat-treatment time. In each heat-treatment condition, the yield stress of TiNi wire was not changed with increasing the amount of prestrain. The interface bonding of TiNi/6061Al composite was fine. There was a 2$\mu\textrm{m}$ thickness of diffusion reaction layer at the interface. We could find out that this diffusion reaction layer was made by the mutual diffusion. The diffusion rate from Al base to TiNi wire was faster than that of reverse diffusion and the amount of the diffusion was also a little more than that of reverse.

  • PDF

$Al/Al_2O_3$ 계면의 젖음특성 및 계면반응 (Wetting Characteristics and Interfacial Reaction at $Al/Al_2O_3$ Interface)

  • 권순용;정대영;최시경;구형회;이종수
    • 한국세라믹학회지
    • /
    • 제31권8호
    • /
    • pp.815-822
    • /
    • 1994
  • Sessile drop studies of molten Al on single crystal sapphire substrate were conducted to understand the wetting behavior and interfacial reaction at Al/Al2O3 interface. To investigate the wetting mechanism, the variation in contact angle was determined with time. The contact angle obtained in this study decreased exponentially with time. This result means that the driving force for wetting is the reduction in interfacial energy between liquid Al and sapphire caused by the interfacial reaction. The closer examination revealed that the reaction was the dissolution of sapphire by molten Al. Ti has been frequently used to improve wetting on ceramic materials. Therefore, the influence of Ti content on the wetting behaviour was investigated in this work. The equilibrium wetting angles of pure Al, Al-0.3 wt%Ti, and Al-1.0 wt%Ti at 100$0^{\circ}C$ were 63$^{\circ}$, 59$^{\circ}$, and 54$^{\circ}$respectively. The difference is considered as the result of the change in interfacial energy caused by the reaction between Ti and sapphire and the interfacial reaction formed the reaction products of varying stoichiometry (TiO, Ti2O3, TiO2 etc.).

  • PDF

Raman spectroscopy of eutectic melting between boride granule and stainless steel for sodium-cooled fast reactors

  • Hirofumi Fukai;Masahiro Furuya;Hidemasa Yamano
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.902-907
    • /
    • 2023
  • To understand the eutectic reaction mechanism and the relocation behavior of the core debris is indispensable for the safety assessment of core disruptive accidents (CDAs) in sodium-cooled fast reactors (SFRs). This paper addresses reaction products and their distribution of the eutectic melting/solidifying reaction of boron carbide (B4C) and stainless-steel (SS). The influence of the existence of carbon on the B4C-SS eutectic reaction was investigated by comparing the iron boride (FeB)-SS reaction by Raman spectroscopy with Multivariate Curve Resolution (MCR) analysis. The scanning electron microscopy with dispersive X-ray spectrometer was also used to investigate the elemental information of the pure metals such as Cr, Ni, and Fe. In the B4C-SS samples, a new layer was formed between B4C/SS interface, and the layer was confirmed that the formed layer corresponded to amorphous carbon (graphite) or FeB or Fe2B. In contrast, a new layer was not clearly formed between FeB and SS interface in the FeB-SS samples. All samples observed the Cr-rich domain and Fe and Ni-rich domain after the reaction. These domains might be formed during the solidifying process.

산저항성을 가진 PVA 투과증발막을 이용한 불화에탄올과 메타크릴산의 에스테르화 반응 (Esterification of Fluoroethanol with Methacrylic Acid through Acid-resistant Poly(vinyl alcohol) Pervaporation Membranes)

  • 김정훈;장봉준;이용택;이수복
    • 멤브레인
    • /
    • 제16권3호
    • /
    • pp.230-234
    • /
    • 2006
  • 본 연구는 산저항성을 가진 새로운 폴리비닐알콜계 투과증발막을 이용한 불화에탄올(TFEA)과 메타크릴산(MA)의 에스테르화 반응에 관한 연구이다. TFEA와 MA의 에스테르화 에스텔화반응에 사용된 폴리비닐알콜계 막은 PVA와 EGDE의 열 가교반응을 통하여 제조되었다. 에스텔화 반응의 반응조건 - 반응온도, 산 촉매의 양, 초기 몰비(불화에탄올/메탄크릴산)- 등을 달리하여 에스텔화 반응에 미치는 영향을 조사하였다. 실험 결과, TFEMA 전환율은 반응온도 촉매의 양, 초기몰비가 증가함에 따라 향상되었다. TFEMA 전환율이 90% 이상을 위한 경제적인 반응조건은 $90^{\circ}C$의 반응온도, 2.5 wt%의 촉매 양, 그리고 1.7의 초기 반응 몰비였다.

Mn-Zn 페라이트 단결정과 접합유리와의 계면반응이 자기적특성에 미치는 영향 (Effect of Interfacial Reaction between Mn-Zn Ferrite Single Crystal and Bonding Glass on Magnetic Properties)

  • 제해준;김영환;김병국;박재관
    • 한국자기학회지
    • /
    • 제11권5호
    • /
    • pp.226-231
    • /
    • 2001
  • Mn-Zn 페라이트 단결정과 ZnO가 6 mol% 첨가된 SiO$_2$-PbO 다성분계 유리를 700, 800, 900, 1000 $^{\circ}C$에서 열처리시킨 후 계면반응과 자기적 특성 변화를 분석하였다. 계면반응분석 결과, 계면에 2차상은 생성되지 않았으며, 계면의 페라이트 부위에 Zn 농도가 증가하였으며 반대로 Mn 농도는 감소하였다. 열처리 온도가 증가함에 따라 접합시편의 초기 투자율 값이 떨어져, 주파수 100 KHz 에서의 700 $^{\circ}C$ 열처리 시편의 초기투자율은 1766이었으나 1000 $^{\circ}C$에서는 907로 감소하였다. 이러한 초기투자율의 감소는, 계면반응 시 페라이트의 용해 및 성분 원소들의 확산으로 인한 자성 소실부위 발생 및 계면의 페라이트 부위에 생성된 Zn농도 증가 층과의 열팽창계수 타이에 의한 잔류응력 발생에 의한 것으로 판단되었다.

  • PDF

니켈실리사이드 제조온도에 따른 측벽물질과의 반응안정성 연구 (A Study on Reaction Stability Between Nickel and Side-wall Materials With Silicidation Temperature)

  • 안영숙;송오성
    • 한국재료학회지
    • /
    • 제11권2호
    • /
    • pp.71-75
    • /
    • 2001
  • The reaction stability of nickel with side-wall materials of SiO$_2$ and Si$_3$N$_4$ on p-type 4"(100) Si substrate were investigated. Ni on 1300 $\AA$ thick SiO$_2$ and 500 $\AA$ - thick Si$_3$N$_4$ were deposited. Then the samples were annealed at 400, 500, 750 and 100$0^{\circ}C$ for 30min, and the residual Ni layer was removed by a wet process. The interface reaction stability was probed by AES depth Profiling. No reaction was observed at the Ni/SiO$_2$ and Ni/Si$_3$N$_4$, interfaces at 400 and 50$0^{\circ}C$. At 75$0^{\circ}C$, no reaction occurred at Ni/SiO$_2$ interface, while $NiO_x$ and Si$_3$N$_4$ interdiffused at Ni/Si$_3$N$_4$ interface. At 100$0^{\circ}C$, Ni layers on SiO$_2$ and Si$_3$N$_4$ oxidized into $NiO_x$ and then $NiO_x$ interacted with side-wall materials. Once $NiO_x$ was formed, it was not removed in wet etching process and easily diffused into sidewall materials, which could lead to bridge effect of gate-source/drain.

  • PDF

Al-9Si-0.3Mg 주조용 합금에서 Sludge 형성이 금형소착 반응층 두께에 미치는 영향 (Effect of Sludge Formation on the Thickness of Die Soldering Reaction Layer in Al-9Si-0.3Mg Casting Alloy)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제30권2호
    • /
    • pp.76-82
    • /
    • 2010
  • Effect of reaction time and sludge formation on the thickness of die soldering reaction layer has been studied in Al-9Si-0.3Mg casting alloy. Ternary ${\alpha}_{bcc}-Al_8Fe_2Si$ and ${\alpha}_{hcp}-Al_8Fe_2Si$ intermetallic compounds formed at the interface of SKD61 tool steel by interaction diffusion of Al, Fe and Si atoms after 0.5hr and 6hr immersion time, respectively. Binary ${\eta}-Fe_2Al_5$ additionally formed at the interface of SKD61 tool steel after 10hr immersion time. Thickness of soldering reaction layer in die surface increased as immersion time increased from 0.5hr to 24hr. Sludge formation was ascertained in the samples which were immersed in the melts more than 10hr. Reaction of die soldering after sludge formation was more accelerated than that of before sludge formation due to a decrease in Fe content, followed by higher diffusion rate of Al in the melt by sludge formation.

철의 고온 황화부식에 미치는 탄소의 영향 (The Effect of Carbon on the Hot Corrosion of lron by Sulfur Containing Environment.)

  • 최성필;강성군;백영남
    • 한국표면공학회지
    • /
    • 제21권2호
    • /
    • pp.53-67
    • /
    • 1988
  • The high temperature corrosion of Fe-C alloys were studied at I atm SO gas in the temperature range 500~80$0^{\circ}C$ by means of a thermogravimetric analysis. The Na2SO4 induced high tempwrature corrosion rate was also measured at atm O2 gas under above the temperature renge. The reaction products were identified with the aid of X-ray diffraction technique, and micostruction of the alloy/scale interface was observed with a optical microscope and SEM. The experimental results were disussed by the themodeynamic calcutions. Under above the experimental condition. the reaction rates decrbon with increasing carbon content. The transfer of Fe ion was limited by a residue of carbon precipitated at alloy scale interface due to the oxidation of Fe-C alloys at alloy surface. The effect of cold working on reaction rate was different between the Fe containing low carbon and Fe-C Alloy containing carbon above 0,73 wt%. In a cold worked iron containing low carbon content, the crystallization of metal surface leads to the poor adherence between the alloy and the cavity formed between the alloy and scale. The outward diffusion of ion through the scale is estimated to be hindered by the cavity formed between the scale, consequently decreasing reaction rate. In the case Fe-C containing carbon above 0.73 Wt% alloy, the reaction rate was little affected by cold working, because the effect of content on reaction rats is greater than the effect of cold working.

  • PDF

Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에 대한 연구 (A Study on SiC/SiC and SiC/Mild steel brazing by the Ag-Ti based alloys)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • 제14권4호
    • /
    • pp.99-108
    • /
    • 1996
  • The microstructure and bond strength are examined on the SiC/SiC and SiC/mild steel joints brazed by the Ag-Ti based alloys with different Ti contents. In the SiC/SiC brazed joints, the thickness of the reaction layers at the bond interface and the Ti particles in the brazing alloy matrices increase with Ti contents. When Ti is added up to 9 at% in the brazing alloy. $Ti_3SiC_2$ phase in addition to TiC and $Ti_5Si_3$ phase is newly created at the bond interface and TiAg phase is produced from peritectic reaction in the brazing alloy matrix. In the SiC/mild steel joints brazed with different Ti contents, the microstructure at the bond interface and in the brazing alloy matrix near SiC varies similarly to the case of SiC/SiC brazed joints. But, in the brazing alloy matrix near the mild steel, Fe-Ti intermetallic compounds are produced and increased with Ti contents. The bond strengths of the SiC/SiC and SiC/mild steel brazed joints are independent on Ti contents in the brazing alloy. There are no large differences of the bond strength between SiC/SiC and SiC/mild steel brazed joints. In the SiC/mild steel brazed joints, Fe dissolved from the mild steel does not affect on the bond strength of the joints. Thermal contraction of the mild steel has nearly no effects on the bond strength due to the wide brazing gap of specimens used in the four-point bend test. The brazed joints has the average bond strength of about 200 MPa independently on Ti contents, Fe dissolution and joint type. Fracture in four-point bend test initiates at the interface between SiC and TiC reaction layer and propagates through SiC bulk. The adhesive strength between SiC and TiC reaction layer seems to mainly control the bond strength of the brazed joints.

  • PDF