• Title/Summary/Keyword: Interface reaction

Search Result 697, Processing Time 0.022 seconds

Surface characteristics and biocompatibility of bioinert nitrides ion plated titanium implant (생불활성 질화물 이온도금된 티타늄 임프란트의 표면특성 및 생체적합성)

  • Chang, Kap-Sung;Kim, Heung-Joong;Park, Joo-Cheol;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.1
    • /
    • pp.209-231
    • /
    • 1999
  • Even though titanium(Ti) and its alloys are the most used dental implant materials, there are some problems that Ti wears easily and interferes normal osteogenesis due to the metal ions. Ti coated with bioactive ceramics such as hydroxyapatite has also such problems as the exfoliation or resorption of the coated layer, Recent studies on implant materials have been proceeding to improve physical properties of the implant substrate and biocompatibility of the implant surfaces. The purpose of the present study was to examine the physical property and bone tissue compatibility of bioinert nitrides ion plated Ti, Button type specimens(14mm in diameter, 2.32rrun in height) for the abrasion test and cytotoxicity test and thread type implants(3.75mm in diameter, 6mm in length) for the animal experiments were made from Ti(grade 2) and 316LVM stainless steel. Ti specimens were ion plated with TiN, ZrN by the low temperature arc vapor deposition, and the depth profile of the TiN/Ti, ZrN/Ti ion plated surface was examined by Auger Electron Spectroscopy. Three kind of button type specimens .of TiN/Ti, ZrN/Ti and Ti were used for abrasion test, and HEPAlClC7 cells and CCD cells were cultivated for 4 days with the specimens for cytotoxicity test. Thread type implants of TiN/Ti, ZrN/Ti, Ti, 316LVM were implanted on the femur of 6 adult dogs weighing 10kg-13kg. Two dogs were sacrified for histological examination after 45 days and 90 days, and four dogs were sacrified for the removal torque test of the implant') after 90 days. The removal torque force was measured by Autograph (Shimadzu Co., AGS-1000D series, Japan). Abrasion resistance of TiN/Ti was the highest, and that of ZrN/Ti and Ti were followed. The bioinert nitride ion plated Ti had much better abrasion resistance, compared with Ti, In the cytotoxicity test, the number of both cells were increased in all specimens, and there were no significant difference in cytotoxic reaction among all groups (p>0.1), In histological examination, 316LVM showed the soft tissue engagement in interface between the implant and bone, but the other materials after 45 days noted immature new bone formation in the medullary portion along the implant surface, and those after 90 days showed implant support by new bone formation in both the cortical and the medullary portion, The removal torque force of Tilv/Ti showed significantly higher than that of Ti(p(O,05). The difference in removal torque force between TiN/Ti and ZrN/Ti was not significant(p>0.05), and that of 316LVM was lowest among all groups(p<0.05). These results suggest that bioinert nitrides ion plated Ti can resolve the existing problems of Ti and bioactive ceramics, and it may be clinically applicable to human.

  • PDF

Attachment of Human Gingival Fibroblast to Various Subgingival Restorations;A Comparative Study in Vitro (다양한 치은 연하 수복물에 대한 치은 섬유아 세포 부착 연구)

  • Lee, Eun-Suk;Song, In-Taeck;Lim, Jeong-Su;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.621-636
    • /
    • 1999
  • When mucoperiosteal flaps are positioned and sutured to desirable position, the wound contains several interface between tissues which differ fundamentally in composition & biological reaction. Thus the C-T surface of the flap will, on one hand, oppose another vascularized surface, and on the other, the avascular dental material for example, when root resoptions, fractured root, endodontic perforation, deep root carious lesions were filled with amalgam, glass ionomer, resin etc. Recently, a number of case report described the successful treatment of a subgingival root lesion with restorative material & free gingival graft, open flap surgery, but more objective research was needed . Most of study on restorative materials were concerned for cytotoxicity not for actual healing event on that materials and its influencing factors such as biocompatibility, surface wettability, surface topography . The aim of this in vitro study was to evaluate the effect of amalgam, resin modified glass ionomer, composite resin per se, and their surface roughness on the growth of human gingival fibroblast. The cells were obtained and placed on culture flask and incubated for 3 days with the prepared test materials. Then count the attached cell number with hemocytometer,(n=12) and 2 samples were examined with SEM about attachment cell morphology . Another 4 samples were evaluated on their surface roughness with Talysurf and average surface roughness value(Ra) were obtained. Statistical difference in attached cell number, roughness value were analyzed using ANOVA. The number of attached cell was as follows, for root dentin specimen 16.7${\pm}$4.41, resin modified glass ionomer 14.0${\pm}$4.15, resin 8.13${\pm}$3.63, amalgam 0.72${\pm}$3.33(${\times}10^3$). Between root dentin and resin-modified glass ionomer, no significant difference was observed, but resin, amalgam showed a significant less cell numbers than for root dentin, resin modified glass ionomer cement. SEM examination expressed many cell surface attachment apparatus in root dentin and resin modified glass ionomer specimens. For resin specimen, cell attachment was observed but exposed less appratus. The average surface roughness value are following results. Dentin specimen 0.6972${\pm}$ 0.104, resin modified glass ionomer 0.0822${\pm}$0.009, resin 0.0875${\pm}$0.005, amalgam 4.2145${\pm}$0.985(${\mu}m$). Between root dentin, resin-modified glass ionomer, and resin, no significant difference was observed, but amalgam showed a significant more rough surface than other groups. When evlauated the interrelationship between cell attachment and surface roughness, therefore, there was weak reverse correlation.(pearson correlation : - 0.593) These results suggest that resin modified glass ionomer have the favorable healing potential when used for subgingival restoration. And for relationship between cell attachment and surface characteristics, further investigations were needed.

  • PDF

Effects of Brazing Processing Condition on Mechanical Properties and Reliability of Si3N/S.S. 316 Joints (브레이징 접합공정 조건이 SiN4/S.S. 316 접합체의 기계적 특성 및 신뢰도에 미치는 영향)

  • Chang, Hwi-Souck;Park, Sang-Whan;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.955-962
    • /
    • 2002
  • The microstructure change of brazed $Si_3N_4$/Stainless steel 316 joint with Cu buffer layer were examined to clarify the effects of brazing process conditions such as brazing time and temperature on the mechanical properties and reliability of brazed joints. For the brazed joint above 900${\circ}C$, the Cu buffer layer was completely dissolved into brazing alloy and the thickness of reaction product formed at $Si_3N_4$/brazing alloy joint interface was abruptly increased, which could increase the amounts of residual stress developed in the joint. The fracture strength of brazed $Si_3N_4$/Stainless steel 316 joint with Cu buffer layer at 950${\circ}C$ was much reduced comparing to those of joints brazed at the lower temperature. But, it was found that the effects of brazing time was not critical on the mechanical properties as well as the reliability of $Si_3N_4$/Stainless steel 316 joint with Cu buffer layer brazed at the temperature below 900${\circ}C$.

Microwave Dielectric Properties of La2O3-B2O3-TiO2 Glass-Ceramic and BaNd2Ti5O14Ceramic System for LTCC Application (저온동시소성(LTCC)을 위한 결정화 유리(La2O3-B2O3-TiO2계)와 BaNd2Ti5O14 세라믹을 이용한 마이크로파 유전체 특성)

  • 황성진;김유진;김형순
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.599-604
    • /
    • 2004
  • The LTCCs (Low-Temperature Co-fired Ceramics) are very important for electronic industry to build smaller RF modules and to fulfill the necessity for miniaturization of devices in wireless communication industry. The dielectric materials with sintering temperature $T_{sint}$<90$0^{\circ}C$ are required. In this study, BaO-N $d_2$ $O_3$-Ti $O_2$ (BNT : 20∼40 wt%) for ceramic materials and L $a_2$ $O_3$- $B_2$ $O_3$-Ti $O_2$ (LBT : 80∼60 wt%) for crystallizable glasses were used. The glass/ceramic composites were investigated for sintering behavior, phase evaluation, densities, interface reaction and microwave dielectric properties. It was found that the addition LBT glass frist significantly lowered the sintering temperature to below 90$0^{\circ}C$ and the densification with increasing addition LBT glass frist developed rapidly which was meant to be namely 90% of relative density. The sintered bodies ekhibited applicable dielectric properties, namely 15 for $\varepsilon$$_{r}$,, 10000 GHz for Q* $f_{0}$. The results suggest that the composites have good potential as a new candidate for LTCC materials.

Microstructure and EDM Processing of $MoSi_2$ Intermetallic Composite ($MoSi_2$ 금속간화합물 복합재료의 미세구조와 방전가공특성)

  • Yoon, Han-Ki;Lee, Sang-Pill;Yoon, Kyong-Wok;Kim, Dong-Hyun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • This paper describes the machining characteristics of the $MoSi_2$ based composites by electric discharge drilling with various tubular electrodes, besides, Hardness characteristics and microstructures of $Nb/MoSi_2$ laminate composites were evaluated from the variation of fabricating conditions such as preparation temperature, applied pressure and pressure holding time. $MoSi_2$ -based composites has been developed in new materials for jet engine of supersonic-speed airplanes and gas turbine for high- temperature generator. Achieving this objective may require new hard materials with high strength and high temperature-resistance. However, With the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material, the tool electrode being almost non-unloaded, because there is no direct contact between the tool electrode and the workpiece. By combining a nonconducting ceramics with more conducting ceramic it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and $MoSi_2$ powder was an excellent strategy to improve hardness characteristics of monolithic $MoSi_2$. However, interfacial reaction products like (Nb, Mo)$SiO_2$ and $Nb_2Si_3$ formed at the interface of $Nb/MoSi_2$ and increased with fabricating temperature. $MoSi_2$ composites which a hole drilling was not possible by the conventional machining process, enhanced the capacity of ED-drilling by adding $NbSi_2$ relative to that of SiC or $ZrO_2$ reinforcements.

  • PDF

Sintering and Electrical Properties of Cr-doped ZnO-Bi2O3-Sb2O3 (Cr을 첨가한 ZnO-Bi2O3-Sb2O3계의 소결과 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.942-948
    • /
    • 2010
  • In this study we aims to examine the effects of 0.5 mol% $Cr_2O_3$ addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and interface state levels of ZnO-$Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5, 1.0, and 2.0) systems (ZBS). The samples were prepared by conventional ceramic process, and characterized by XRD, density, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. The sintering and electrical properties of Cr-doped ZBS (ZBSCr) systems were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed more than $100^{\circ}C$ lowered on heating in ZBS (Sb/Bi=1.0) by Cr doping. The densification of ZBSCr (Sb/Bi=0.5) system was retarded to $800^{\circ}C$ by unknown Bi-rich phase produced at $700^{\circ}C$. Pyrochlore on cooling was reproduced in all systems. And $Zn_7Sb_2O_{12}$ spinel ($\alpha$-polymorph) and $\delta-Bi_2O_3$ phase were formed by Cr doping. In ZBSCr, the varistor characteristics were not improved drastically (non-linear coefficient $\alpha$ = 7~12) and independent on microstructure according to Sb/Bi ratio. Doping of $Cr_2O_3$ to ZBS seemed to form $Zn_i^{..}$(0.16 eV) and $V^{\bullet}_o$ (0.33 eV) as dominant defects. From IS & MS, especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one (1.1 eV) and electrically inactive intergranular one (0.95 eV) with temperature.

Reviews in Infrared Spectroscopy and Computational Chemistry to Reveal Rhizospheric Interactions among Organic Acids, Oxyanions and Metal oxides: Fundamental Principles and Spectrum Processing (유기산, 산화음이온 및 금속 산화물 간의 근권 내 상호작용 연구를 위한 계산화학과 적외선 분광학에 관한 총설: 기본적인 원리와 스펙트럼 처리)

  • Han, Junho;Ro, Hee-Myong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.7
    • /
    • pp.426-439
    • /
    • 2017
  • This review summarizes advantage and limitation in infrared spectroscopy and computational chemistry to understand rhizospheric interaction among organic acids, oxyanions and metal oxides. Since organic acids and metal oxides determine dynamics of oxyanions in the soil environment, knowledge of fundamental mechanisms is a prerequisite for understanding the interactions at soil-water interface. Attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) is a powerful tool to measure the interfacial reactions. However, the ATR-FTIR measurements are abstruse, because the optical characteristics for measurements are variable depending on the experimental setup. In addition, spectral overlapping is a primary obstacle to the analysis of the interfacial reaction; thus, it is essential to detect and to deconvolute bands for signal interpretation. In this review, we expained the fundamental principle for spectrum processing, and four band identification methods, such as derivative spectroscopy, two-dimension correlation spectroscopy, multivariate curve resolution, and computational chemistry with example of aqueous phosphate speciation. As a result, spectrum processing and computational chemistry improved interpretation and spectral deconvolution of overlapped spectra in relatively simple systems, but it was still unsatisfactory for the problems in more complexed system like nature. Nevertheless, we believed that our challenge would contribute practically to develop adequate analytical procedure, signal processing and protocols that could help to improve interpretation and to understand the interfacial interactions of oxyanions in natural systems.

Effect of RuO$_2$ Thin Film Microstructure on Characteristics of Thin Film Micro-supercapacitor ($RuO_2$박막의 미세 구조가 박막형 마이크로 슈퍼캐패시터의 특성에 미치는 영향)

  • Kim, Han-Ki;Yoon, Young-Soo;Lim, Jae-Hong;Cho, Won-Il;Seong, Tae-Yeon;Shin, Young-Hwa
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.671-678
    • /
    • 2001
  • All solid-state thin film micro supercapacitor, which consists of $RuO_2$/LiPON/$RuO_2$ multi layer structure, was fabricated on Pt/Ti/Si substrate using a $RuO_2$ electrode. Bottom $RuO_2$ electrode was grown by dc reactive sputtering system with increasing $O_2/[Ar+O_2]$ ratio at room temperature, and a LiPON electrolyte film was subsequently deposited on the bottom $RuO_2$ electrode at pure nitrogen ambient by rf reactive sputtering system. Room temperature charge-discharge measurements based on a symmetric $RuO_2$/LiPON/$RuO_2$ structure clearly demonstrates the cyclibility dependence on the microstructure of the $RuO_2$ electrode. Using both glancing angle x-ray diffraction (GXRD) and transmission electron microscopy (TEM) analysis, it was found that the microstructure of the $RuO_2$ electrode was dependent on the oxygen flow ratio. In addition, x- ray photoelectron spectroscopy(XPS) examination shows that the Ru-O binding energy is affected by increasing oxygen flow ratio. Furthermore, TEM and AES depth profile analysis after cycling demonstrates that the interface layer formed by interfacial reaction between LiPON and $RuO_2$ act as a main factor in the degradation of the cyclibility of the thin film micro-supercapacitor.

  • PDF

Correlation between Interfacial Reaction and Brittle Fracture Found in Electroless Ni(P) Metallization (계면 화학반응과 무전해 니켈 금속층에서 나타나는 취성파괴와의 연관성에 관한 연구)

  • Sohn Yoon-Chul;Yu Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.41-46
    • /
    • 2005
  • A systematic investigation of shear testing was conducted to find a relationship between Ni-Sn intermetallic spatting and the brittle fracture observed in electroless Ni(P)/solder interconnection. Brittle fracture was found in the solder joints made of Sn-3.5Ag, while only ductile fracture was observed in a Cu-containing solder (Sn-3.0Ag-0.5Cu). For Sn-3.0Ag-0.5Cu joints, $(Ni,Cu)_3Sn_4$ and/or $(Cu,Ni)_6Sn_5$ compound were formed at the interface without spatting from the Ni(P) film. For Sn-3.5Ag, $Ni_3Sn_4$ compound was formed and brittle fracture occurred in solder pads where $Ni_3Sn_4$ had spalled. From the analysis of fractured surfaces, it was found that the brittle fracture occurs through the $Ni_3SnP$ layer formed between $Ni_3Sn_4$ intermetallic layer and the Ni(P) film. Since the $Ni_3SnP$ layer is getting thicker during/ after $Ni_3Sn_4$ spatting, suppression of $Ni_3Sn_4$ spatting is crucial to ensure the reliability of Ni(P)/solder system.

  • PDF

Hydrogen Degradation of Pt/SBT/Si, Pt/SBT/Pt Ferroelectric Gate Structures and Degradation Resistance of Ir Gate Electrode (Pt/SBT/Si, Pt/SBT/Pt 강유전체 게이트 구조에서 수소 열화 현상 및 Ir 게이트 전극에 의한 열화 방지 방법)

  • 박전웅;김익수;김성일;김용태;성만영
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.49-54
    • /
    • 2003
  • We have investigated the effects of hydrogen annealing on the physical and electrical properties of $SrBi_{2}Ta_{2}O_9(SBT)$ thin films in the Pt/SBT/Si (MFS) structure and Pt/SBT/Pt (MFM) one, respectively. The microstructure and electrical characteristics of the SBT films were deteriorated after hydrogen annealing due to the damage of the SBT films during the annealing process. To investigate the reason of the degradation of the SBT films in this work, in particular, the effect of the Pt top electrodes, SBT thin films deposited on Si, Pt, respectively, were annealed with the same process conditions. From the XRD, XPS, P-V, and C-V data, it was seen that the SBT itself was degraded after $H_2$ annealing even without the Pt top electrodes. In addition, the degradation of the SBT films after $H_2$ annealing was accelerated by the catalytic reaction of the Pt top electrodes which is so-called hydrogen degradation. To prevent this phenomenon, we proposed the alternative top electrode material, i.e. Ir, and the electrical properties of the SBT thin films were examined in the $Ir/IrO_2/SBT/IrO_2$ structures before and after the H$_2$ annealing and recovery heat-treatment processes. From the results of the P-V measurement, it could be concluded that Ir is one of the promising candidate as the electrode material for degradation resistance in the MFM structure using SBT thin films.

  • PDF