• 제목/요약/키워드: Interface height

검색결과 305건 처리시간 0.027초

Contact Start-Stop 방식에서의 극저부상 높이에서 Head-Disk Interface Interactions 연구 (A Study on Head-Disk Interactions at Ultra-low Flying Height in Contact Start-Stop)

  • 조언정
    • Tribology and Lubricants
    • /
    • 제19권2호
    • /
    • pp.102-108
    • /
    • 2003
  • The height of laser bumps has been considered as the limit of the minimum flying height in the contact start-stop (CSS) of hard disk drives. In this paper, tribological interactions at flying height under laser bumps are investigated in a spin stand for development of ultra-low flying head-disk interface. With the reduction of the spinning speed in a spin stand, the flying height is decreased under the height of laser bumps and, then, head-disk interactions are investigated using AE and stiction/friction signals. During seek tests and 20000 cycle-sweep tests, AE and stiction/friction signals are not significantly changed and there are no catastrophic failures of head-disk interface. Bearing analysis and AFM analysis show that there are signs of wear and plastic deformation on the disks. It is suggested that flying height could be as low as and, sometimes, lower than laser bump height.

건물화재시 경계면 선정에 관한 연구 (A Study on the Decision of the Interface Height in Compartment Fire)

  • 허만성
    • 한국화재소방학회논문지
    • /
    • 제11권2호
    • /
    • pp.11-17
    • /
    • 1997
  • 화재시 실내의 경계면 선정에 관한 연구를 하기 위하여 쓰레기통, 의자, 카패트 및 소파의 화재실험 을 실제건물에서 수행하였다. 경계변의 선정을 하기위해서 화재실의 온도변화가 큰 지점은 여러 곳 온 도를 측정하고, 각 측정점의 온도를 시간과 높이별로 평균온도를 구한다. 또한 기본 측정점을 기준으로 화재실 전체구역에 대한 평변의 온도분포를 구하여 용도변화가 가장 큰 지점을 경계면의 높이로 정한 다. 이결과 어느 화재의 경우나 경계면이 뚜렷이 나타났고, 경계면 높이는 1[m] 근처에서 일정한 상태 값을 유지하였다. 다만, 최대온도를 나타내는 시간에는 경계면 높이가 O.25[m]내지 O.75[m]까지도 내 려왔다.

  • PDF

슬러지계면층높이변화모델에서 컬럼높이에 대한 영향 (The Effect of Column Height on Sludge-Water Interface Height Change Model)

  • 박석균;강선홍
    • 상하수도학회지
    • /
    • 제20권2호
    • /
    • pp.265-272
    • /
    • 2006
  • While sludge settles down in a column, sludge settling characteristic is influenced by effect parameters, interparticle force, wall effect etc. As the height of a column changes, the settling velocity of sludge-water interface changes, too. At lower sludge concentration, particular effect was not observed by the difference of column height, however it was observed that settleability of sludge was greatly influenced by column height when sludge settling was poor or sludge concentration was high. It is therefore required to consider the effect of column height when the power model for sludge interface settling is established. In the tests, there was hardly any $SVI_{ts}$(SVI after "t" minutes) difference in each column after 10min at $1.5kg/m^3$ of sludge concentration. When sludge concentration was at $2.5kg/m^3$, $SVI_{ts}$ tended to be constant after 20min. At $3.5kg/m^3$, $SVI_{ts}$ increased to 30minuets. The purpose of this work is to establish the correction factor that is able to compensate the errors derived from each different height of column.

Batch Column에서의 슬러지계면층 높이변화 예측 (Prediction of Sludge-Water Interface Height Change in Batch Column)

  • 박석균;강선홍
    • 상하수도학회지
    • /
    • 제20권1호
    • /
    • pp.156-163
    • /
    • 2006
  • While sludge is settling in batch column, sludge concentration becomes high. Because the characteristic of sludge settling changes in function of time due to the sludge concentration change, the sludge settling velocity changes too. Also, because the sludge settling characteristic is influenced by a physical characteristic of sludge and a column height etc, it is difficult to exactly measure the sludge settling characteristic. Although the sludge volume indexes, SVI, SSVI and $SSVI_{3.5}$, are used to predict sludge settling characteristic, these indexes are not reliable values. Because the previously established models for sludge settling velocity predict the sludge settling velocity only, it is difficult to predict sluge-water interface height by using those models. The purpose of this experiment is to establish the empirical model which predicts the sludge interface height change with respect to the sludge physical characteristic and the settling condition.

건물화재시 연기층 형성과 영역모델에 관한 연구 (A Study on the Formation of Smoke Layer and the Zone modelling in Compartment Fire)

  • 허만성
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.70-78
    • /
    • 1997
  • The objective of this research is to study on the upper and lower layer temperature, interface height and pressure in case of carpet, chair, trashcan and wardrobe fires in a residential room by performing the theoretical and experimental studies. The theoretical results of the upper and lower layer temperature, the interface height and the pressure were qualitatively well coincided with the experimental results. The uniformly distributed fire in case of carpet showed that the ignition and the initial growth period were relatively short while the fully developed period was considerably long. The concentrated fires such as the wardrobe showed that the ignitions and the initial growth periods were relatively long. The interface heights were around 1m as the steady state. However, at the time of the maximum temperature, the interface height was lowered to 0.5m from the floor. The pressure variation in the fire room ranged between 0.1mmAq and 0.4mmAq, and the temperature reached the highest while the pressure was maximum.

  • PDF

강우로 인한 유입하수량 증가와 슬러지 계면높이 변화에 따른 하수처리장 효율평가 (Evaluation of Sewage Treatment Plant Efficiency in the Variation of Sewage Inflow and Sludge Interface Height by Rainfall)

  • 박혜숙;송석헌
    • 대한환경공학회지
    • /
    • 제36권8호
    • /
    • pp.549-553
    • /
    • 2014
  • 이상 강우 시 하수유입량과 슬러지 계면높이의 변화가 처리효율에 미치는 영향을 실제 처리장에 적용해서 실험한 결과, 유입량이 증가하고, 계면높이가 높아질수록 공공처리장 방류수 수질기준 항목인 $BOD_5$, $COD_{Mn}$, SS, T-N, T-P 처리효율이 감소하였다. 그중 SS는 강우 시 농도변화가 가장 심한 항목으로 0.5배(0.5 Q) 유입 시 슬러지 계면높이 0.5 m에서 74.2%, 1.0 m에서 76.4%, 1.5 m 70.2%, 2.0 m에서 60.7%로 계면높이를 1.0 m로 유지했을 때 처리효율이 가장 높았고, 1.0 Q 유입 시 0.5 m 71.7%, 1.0 m 71.9%, 1.5 m 46.4%, 2.0 m -38.0%로 나타났으며, 2.0 Q~2.0 m 이상과 3.0 Q~1.0 m 이상에서는 sludge rising 현상이 유발되어 공공수역에 악영향을 끼칠 수 있음을 알 수 있었다. 또한 계면높이를 0.5 m로 유지한다 할지라도 유입량이 증가하면 처리효율은 74.2%에서 17.3%로 감소하므로 강우 시 유입량 조절이 가장 중요하고, 계면높이를 1.0 m 이하로 유지하여 운영하여야 공공수역의 수질에 미치는 영향을 최소화 할 수 있다.

Comparison of Electrical Properties between Sputter Deposited Au and Cu Schottky Contacts to n-type Ge

  • Kim, Hogyoung;Kim, Min Kyung;Kim, Yeon Jin
    • 한국재료학회지
    • /
    • 제26권10호
    • /
    • pp.556-560
    • /
    • 2016
  • Using current-voltage (I-V) and capacitance-voltage (C-V) measurements, the electrical properties of Au and Cu Schottky contacts to n-Ge were comparatively investigated. Lower values of barrier height, ideality factor and series resistance were obtained for the Au contact as compared to the Cu contact. The values of capacitance showed strong dependence on the bias voltage and the frequency. The presence of an inversion layer at the interface might reduce the intercept voltage at the voltage axis, lowering the barrier height for C-V measurements, especially at lower frequencies. In addition, a higher interface state density was observed for the Au contact. The generation of sputter deposition-induced defects might occur more severely for the Au contact; these defects affected both the I-V and C-V characteristics.

건물화재시 개구부의 흐름계수에 관한 연구 (A Study on the Flow Coefficient of Compartment Fire)

  • 허만성
    • 한국화재소방학회논문지
    • /
    • 제10권4호
    • /
    • pp.19-27
    • /
    • 1996
  • 상층부의 온도, 경계면 높이 및 흐름형태를 연구하기 위하여 쓰레기통, 의자, 카페트, 소파, 매트리스 및 장농화재 실험을 실제 건물에서 수행하였다. 상부층의 온도와 경계면의 높이는 사각 쓰레기통의 경우 개구부의 흐름계수가 0.65∼0.8, 원형 쓰레기통 및 의자의 경우는 0.65∼0.9, 카페트, 소파, 매트리스 및 장농의 경우는 0.7∼O.9일 때 실험치와 비교적 잘 일치하였다. 경계면의 높이는 가구화재시 1[m] 근처에서 정상상태를 유지하였다. 다만, 최대온도를 나타내는 시간에는 경계면 높이가 바닥에서 0.25[m]∼0.75[m]까지도 내려왔다. 개구부의 흐름형태는 분산화재의 경우는 filling과 buoyant흐름이 나타났고, 집중화재의 경우는 filling에서 바로 flow로 가고 또 flow기간도 길게 나타났다. 경계면 높이가 내려오는 속도는 가구의 가연성 및 공기와의 접촉면적에 비례하여 경계면 높이가 1[m] 근처까지 내려오는데 소요되는 시간은 1분∼3분 이내로 나타났다.

  • PDF

슬러지계면층 높이변화모델에서 슬러지 침전특성에 대한 영향 (The Effect of Sludge Settling Characteristics on Sludge-Water Interface Height Change Model)

  • 박석균;강선홍
    • 상하수도학회지
    • /
    • 제20권1호
    • /
    • pp.147-155
    • /
    • 2006
  • For the further study of the solids flux theory, several researchers have proposed models to predict sludge settling velocity for each different concentration by using sludge indexes, SVI, SSVI and $SSVI_{3.5}$. It is difficult to apply the above models to predict sludge-water interface height in a batch column because sludge settling velocity changes while sludge settle down. While sludge settle down in a batch column, sludge concentration becomes high. The sludge concentration change is one of the most critical causes of the change of sludge settling velocity. Also, sludge concentration change causes of sludge index to change. SVI is more sensitive than SSVI or $SSVI_{3.5}$ to the change of sludge concentration. Each sludge has physical characteristics of its own which makes the settling velocity for each sludge different. The purpose of this study is to establish the correction factors that are able to compensate the errors derived from each different sludge settling characteristic by using sludge indexes, therefore the correction factors are applicable to the model for the change of sludge-water interface height.

Batch Column에서의 슬러지농도변화에 대한 연구 (Study on Sludge Concentration Change in Batch Column)

  • 박석균;강선홍;김동하
    • 상하수도학회지
    • /
    • 제20권3호
    • /
    • pp.443-450
    • /
    • 2006
  • For understanding sludge concentration profile as a function of time, sludge was sampled at each sampling port. When sludge concentration was 3g/L, the vertical sludge concentration distribution was similar to that of 2g/L of sludge concentration. During the early stage of sludge settling, sludge concentration increased remarkably as the sludge interface height in batch column became lower. The higher sludge concentration became, the worse sludge setteability became. Also, the type of sludge settling was influenced with sludge concentration gradient in batch column. In the same concentration, the greater sludge concentration gradient was, the faster sludge interface settled down. And the changing sludge concentrations in a batch settling or a continuous settling were simulated by using the equation of sludge interface height change model.