• 제목/요약/키워드: Interface engineering

검색결과 8,143건 처리시간 0.036초

A Conceptual Framework to Study the Effectiveness of Interface Management in Construction Projects

  • KEERTHANAA, K.;SHANMUGAPRIYA, S.
    • Journal of Construction Engineering and Project Management
    • /
    • 제9권3호
    • /
    • pp.1-21
    • /
    • 2019
  • The management of mega construction projects which incorporate a large number of stakeholders, technologies, data, work culture etc., is cumbersome. The experts in the construction arena advocate that interface management serves as a precise tool in resolving these conflict points due to the intricate nature of the construction projects. Interface management is a current trending management practice in the construction industry which is also a beneficiary to mega/fast track projects in enhancing the project performance. The main objective of this study is to validate a model for assessing the relationships among interface management, IT applications, project performance & project benefits. The mediating effect of interface management in relationship between project performance & interfacial factors was also investigated. The research model was validated using PLS-SEM (Partial Least Square-Structural Equation Modelling) approach. Data were collected from clients, contractors, consultants in large scale projects through questionnaire survey and smart-PLS software was used to analyse the conceptual model. The research model comprises eleven hypothesis and the significance of these hypothesis were tested using T- statistics values. The research implies that people/participants factor is greatly influenced by interface management with the path coefficient of 0.608 and also enhancement of project's schedule performance due to the interface management is strongly appealing (Path coefficient = 0.711). The results also reveal IT application is significantly associated with interface management practice (Path coefficient =0.723) and also the effect of IT application on project performance (schedule, cost, quality & safety) is successfully mediated through interface management practice. The practical application of this validated model was done through case study. The case study aims at measuring the impact of interface management on interfacial factors and role of interface management in improving the project performance in the construction organisations.

Material and geometric properties of hoop-type PZT interface for damage-sensitive impedance responses in prestressed tendon anchorage

  • Dang, Ngoc-Loi;Pham, Quang-Quang;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • 제9권2호
    • /
    • pp.129-155
    • /
    • 2022
  • In this study, parametric analyses on a hoop-type PZT (lead-zirconate-titanate) interface are performed to estimate the effects of the PZT interface's materials and geometries on sensitivities of impedance responses under strand breakage. The paper provides a guideline for installing the PZT interface suitable in tendon anchorages for damage-sensitive impedance signatures. Firstly, the concept of the PZT interface-based impedance monitoring technique in prestressed tendon anchorage is briefly described. A FE (finite element) analysis is conducted on a multi-strands anchorage equipped with a hoop-type PZT interface for analyzing materials and geometric effects. Various material properties, geometric sizes of the interface, and PZT sensor are simulated under two states of prestressing force for acquiring impedance responses. Changes in impedance signals are statistically quantified to analyze the effect of these factors on damage-sensitive impedance monitoring in the tendon anchorage. Finally, experimental analyses are performed to demonstrate the effects of materials and geometrical properties of the PZT interface on damage-sensitive impedance monitoring.

Nonlinear analysis of finite beam resting on Winkler foundation with consideration of beam-soil interface resistance effect

  • Zhang, L.;Zhao, M.H.;Xiao, Y.;Ma, B.H.
    • Structural Engineering and Mechanics
    • /
    • 제38권5호
    • /
    • pp.573-592
    • /
    • 2011
  • Comprehensive and accurate analysis of a finite foundation beam is a challenging engineering problem and an important subject in foundation design. One of the limitation of the traditional Winkler elastic foundation model is that the model neglects the effect of the interface resistance between the beam and the underneath foundation soil. By taking the beam-soil interface resistance into account, a deformation governing differential equation for a finite beam resting on the Winkler elastic foundation is developed. The coupling effect between vertical and horizontal displacements is also considered in the presented method. Using Galerkin method, semi-analytical solutions for vertical and horizontal displacements, axial force, shear force and bending moment of the beam under symmetric loads are presented. The influences of the interface resistance on the behavior of foundation beam are also investigated.

Reflection and Transmission of Acoustic Waves Across Contact Interfaces

  • Kim, Noh-Yu;Jhang, Kyung-Young;Lee, Tae-Hoon;Yang, Seung-Yong;Chang, Young-Chul
    • 비파괴검사학회지
    • /
    • 제28권3호
    • /
    • pp.292-301
    • /
    • 2008
  • A linearized model for hysteretic acoustic nonlinearity of imperfectly joined interface is proposed and analyzed by using Coulomb damping to investigate the characteristics of the reflection and transmission coefficients for harmonic waves at the contact interface. Closed crack is modeled as non welded interface that has nonlinear discontinuity condition in displacement across its boundary. Based on the hysteretic contact stiffness of the contact interface, the reflected and transmitted waves are determined by deriving the tractions on both sides of the interface in terms of the discontinuous displacements across the interface. It is found that the amplitudes of the reflected and transmitted waves are dependent on the frequency and the hysteretic stiffness. As the frequency of the incident wave increases, the higher reflection and lower transmission are obtained. It also shows that the hysteresis of the interface increases the reflection coefficient, but reduces the transmission coefficient. A fatigue crack is also made in aluminum specimen to demonstrate these characteristics of the reflection and transmission of contact interfaces.

A comparative experimental study on the mechanical properties of cast-in-place and precast concrete-frozen soil interfaces

  • Guo Zheng;Ke Xue;Jian Hu;Mingli Zhang;Desheng Li;Ping Yang;Jun Xie
    • Geomechanics and Engineering
    • /
    • 제36권2호
    • /
    • pp.145-156
    • /
    • 2024
  • The mechanical properties of the concrete-frozen soil interface play a significant role in the stability and service performance of construction projects in cold regions. Current research mainly focuses on the precast concrete-frozen soil interface, with limited consideration for the more realistic cast-in-place concrete-frozen soil interface. The two construction methods result in completely different contact surface morphologies and exhibit significant differences in mechanical properties. Therefore, this study selects silty clay as the research object and conducts direct shear tests on the concrete-frozen soil interface under conditions of initial water content ranging from 12% to 24%, normal stress from 50 kPa to 300 kPa, and freezing temperature of -3℃. The results indicate that (1) both interface shear stress-displacement curves can be divided into three stages: rapid growth of shear stress, softening of shear stress after peak, and residual stability; (2) the peak strength of both interfaces increases initially and then decreases with an increase in water content, while residual strength is relatively less affected by water content; (3) peak strength and residual strength are linearly positively correlated with normal stress, and the strength of ice bonding is less affected by normal stress; (4) the mechanical properties of the cast-in-place concrete-frozen soil interface are significantly better than those of the precast concrete-frozen soil interface. However, when the water content is high, the former's mechanical performance deteriorates much more than the latter, leading to severe strength loss. Therefore, in practical engineering, cast-in-place concrete construction is preferred in cases of higher negative temperatures and lower water content, while precast concrete construction is considered in cases of lower negative temperatures and higher water content. This study provides reference for the construction of frozen soil-structure interface in cold regions and basic data support for improving the stability and service performance of cold region engineering.

접촉열전도재를 도포한 접촉열저항 특성연구 (Characterization of Thermal Contact Resistance Doped with Thermal Interface Material)

  • ;;;문병준;이선규
    • 한국정밀공학회지
    • /
    • 제30권9호
    • /
    • pp.943-950
    • /
    • 2013
  • This paper describes the thermal contact resistance and its effect on the performance of thermal interface material. An ASTM D 5470 based apparatus is used to measure the thermal interface resistance. Bulk thermal conductivity of different interface material is measured and compared with manufacturers' data. Also, the effect of grease void in the contact surface is investigated using the same apparatus. The flat type thermal interface tester is proposed and compared with conventional one to consider the effect of lateral heat flow. The results show that bulk thermal conductivity alone is not the basis to select the interface material because high bulk thermal conductivity interface material can have high thermal contact resistance, and that the center voiding affects the thermal interface resistance seriously. On the aspect of heat flow direction, thermal impedance of the lateral heat flow shows higher than that of the longitudinal heat flow by sixteen percent.

모바일 환경을 위한 큐빅형 텐저블 사용자 인터페이스 개발 (Cubic Tangible User Interface Development for Mobile Environment)

  • 옥수열
    • 한국정밀공학회지
    • /
    • 제26권10호
    • /
    • pp.32-39
    • /
    • 2009
  • Most mobile devices provide limited input interfaces in order to maximize the mobility and the portability. In this paper, the author proposes a small cubic-shaped tangible input interface which tracks the location, the direction, and the velocity using MEMS sensor technology to overcome the physical limitations of the poor input devices in mobile computing environments. As the preliminary phase for implementing the proposed tangible input interface, the prototype design and implementation methods are described in this paper. Various experiments such as menu manipulation, 3-dimensional contents control, and sensor data visualization have been performed in order to verify the validity of the proposed interface. The proposed tangible device enables direct and intuitive manipulation. It is obvious that the mobile computing will be more widespread and various kinds of new contents will emerge in near future. The proposed interface can be successfully employed for the new contents services that cannot be easily implemented because of the limitation of current input devices. It is also obvious that this kind of interface will be a critical component for future mobile communication environments. The proposed tangible interface will be further improved to be applied to various contents manipulation including 2D/3D games.

Evaluation of soil-concrete interface shear strength based on LS-SVM

  • Zhang, Chunshun;Ji, Jian;Gui, Yilin;Kodikara, Jayantha;Yang, Sheng-Qi;He, Lei
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.361-372
    • /
    • 2016
  • The soil-concrete interface shear strength, although has been extensively studied, is still difficult to predict as a result of the dependence on many factors such as normal stresses, surface roughness, particle sizes, moisture contents, dilation angles of soils, etc. In this study, a well-known rigorous statistical learning approach, namely the least squares support vector machine (LS-SVM) realized in a ubiquitous spreadsheet platform is firstly used in estimating the soil-structure interface shear strength. Instead of studying the complicated mechanism, LS-SVM enables to explore the possible link between the fundamental factors and the interface shear strengths, via a sophisticated statistic approach. As a preliminary investigation, the authors study the expansive soils that are found extensively in most countries. To reduce the complexity, three major influential factors, e.g., initial moisture contents, initial dry densities and normal stresses of soils are taken into account in developing the LS-SVM models for the soil-concrete interface shear strengths. The predicted results by LS-SVM show reasonably good agreement with experimental data from direct shear tests.

인간-기계 인터페이스를 위한 근 부피 센서 개발 (Development of the MVS (Muscle Volume Sensor) for Human-Machine Interface)

  • 임동환;이희돈;김완수;한정수;한창수;안재용
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.870-877
    • /
    • 2013
  • There has been much recent research interest in developing numerous kinds of human-machine interface. This field currently requires more accurate and reliable sensing systems to detect the intended human motion. Most conventional human-machine interface use electromyography (EMG) sensors to detect the intended motion. However, EMG sensors have a number of disadvantages and, as a consequence, the human-machine interface is difficult to use. This study describes a muscle volume sensor (MVS) that has been developed to measure variation in the outline of a muscle, for use as a human-machine interface. We developed an algorithm to calibrate the system, and the feasibility of using MVS for detecting muscular activity was demonstrated experimentally. We evaluated the performance of the MVS via isotonic contraction using the KIN-COM$^{(R)}$ equipment at torques of 5, 10, and 15 Nm.

계면에 존재하는 결함의 강성도가 동적 계면균열전파에 미치는 영향 (Effect of the Stiffness of Ingerface Defect on Dynamic Interface Crack propagation)

  • 이억섭;윤해룡;황시원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.671-674
    • /
    • 2001
  • The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamically propagating behavior of the interface crack. This paper investigates the effects of the stiffness of interface defect(exist along the path of the crack propagation) on the dynamic interface crack propagation behavior by comparing the experimental isochromatic fringes to the theoretical stress fields.

  • PDF