• Title/Summary/Keyword: Interface element method

Search Result 709, Processing Time 0.027 seconds

An Evaluation Method of fracture Toughness on Interface Cracks in Bonded Dissimilar Materials (이종 접합체의 계면균열에 대한 파괴인성의 평가방법)

  • 정남용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.110-116
    • /
    • 2003
  • In this paper, an evaluation method of fracture toughness on interface cracks has been investigated under various mixed-mode conditions of the bonded scarf joints. Two types of the bonded scarf joints with an interface crack were prepared to analyze the stress intensity factors using boundary element method(BEM) and to perform the fracture toughness test. From the results of fracture toughness experiments and BEM analysis, an evaluation method of fracture toughness on interface cracks in the bonded dissimilar materials has been proposed and discussed.

A novel treatment of nonmatching finite element meshes via MLS approximation with stabilized nodal integration (이동 최소 제곱 근사와 안정화 절점 적분을 이용한 불일치 유한 요소망의 처리)

  • 조영삼;김현규;전석기;임세영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.591-598
    • /
    • 2002
  • The interface element method for non-matching FEM meshes is extended using stabilized nodal integration. Two non-matching meshes are shown to be joined together compatibly, with the aid of the moving least square approximation. Using stabilized nodal integration, the interface element method is able to satisfy the patch test, which guarantees the convergence of the method.

  • PDF

Evaluation of Strength and Residual Stress in $Si_3N_4/SUS304$ Joint ($Si_3N_4/SUS304$ 접합재의 잔류응력 및 강도평가)

  • 박영철;오세욱;조용배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 1994
  • The measurement of residual stress distribution of $Si_3N_4/SUS304$ joint was performed on 23 specimens with the same joint condition using PSPC type X-ray stress measurement system and the two-dimensional elastoplastic analysis using finite element method was also attempted. As results, residual stress distribution near the interface on the ceramic side of the joint was revealed quantitatively. Residual stress on the ceramic side of the joint was turned out to be tensional near the interface, maximum along the edge, varying in accordance with the condition of the joint and variance to be most conspicuous for the residual stress normal to the interface characterized by the stress singularities. In the vicinity of the interface, the high stress concentration occurs and residual stress distributes three-dimensionally. Therefore, the measured stress distribution differed remarkably from the result of the two-dimensional finite-element analysis. Especially at the center of the specimen near the interface, the residual stress, $\sigma_{x}$ obtained from the finite element analysis was compressive, whereas measurement using X-ray yielded tensile $\sigma_{x}$. Here we discuss two dimensional superposition model the discrepancy between the results from the two dimensional finite element analysis and X-ray measurement.

Moving Least Squares Interface Welding Method for Coupled Analysis of Independently Modeled Finite Element Substructures (독립적으로 모델링된 유한요소 부분구조물 시스템의 통합 연계해석을 위한 이동최소자승 정계접합법의 개발)

  • An, Jae-Mo;Song, You-Me;Choi, Dong-Whan;Cho, Jin-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.26-34
    • /
    • 2005
  • In this paper, a novel moving least squares interface welding method is proposed to carry out the coupled analysis of whole model composed of independently modeled finite element substructures with nodal mismatching interfaces. To verify the validity, and efficiency of the proposed interface welding method, various numerical examples are worked out including patch tests, convergence tests, and examples of coupled analyses of the structural systems with mismatching substructures. From the numerical tests, it is confirmed that one can efficiently carry out the coupled analysis of whole model composed of mismatching finite element substructures through the proposed method without any remeshing or any additional unknown.

Finite element analyses of the stability of a soil block reinforced by shear pins

  • Ouch, Rithy;Ukritchon, Boonchai;Pipatpongsa, Thirapong;Khosravi, Mohammad Hossein
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.1021-1046
    • /
    • 2017
  • The assessment of slope stability is an essential task in geotechnical engineering. In this paper, a three-dimensional (3D) finite element analysis (FEA) was employed to investigate the performance of different shear pin arrangements to increase the stability of a soil block resting on an inclined plane with a low-interface friction plane. In the numerical models, the soil block was modeled by volume elements with linear elastic perfectly plastic material in a drained condition, while the shear pins were modeled by volume elements with linear elastic material. Interface elements were used along the bedding plane (bedding interface element) and around the shear pins (shear pin interface element) to simulate the soil-structure interaction. Bedding interface elements were used to capture the shear sliding of the soil on the low-interface friction plane while shear pin interface elements were used to model the shear bonding of the soil around the pins. A failure analysis was performed by means of the gravity loading method. The results of the 3D FEA with the numerical models were compared to those with the physical models for all cases. The effects of the number of shear pins, the shear pin locations, the different shear pin arrangements, the thickness and the width of the soil block and the associated failure mechanisms were discussed.

An Analysis on the Deformation of Foundation Using the Interface Element Method (접합요소(接合要素)를 이용(利用)한 기초지반(基礎地盤)의 변형해석(變形解析))

  • Park, Byong Kee;Lee, Jean Soo;Lim, Sung Chull
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.155-162
    • /
    • 1990
  • In analysis of deformation in which the stiffness is greatly different between the adjacent materials, the desired results have been obtained by using the interface element method compared with those secured by the conventional method of the concept of continua. However the interface element method was originally developed for the behavior of rocks. This study deals with the deformation analysis of foundation with sand drain by the introduction of interface element. The physical conditions of interface element are devided into three categories by Mohr-Coulomb failure criterion ie. sliding, separation, and contact. Finally the accuracy of the program proposed in this paper is proved highly accurate by performing the comparison of the theoretical values and numerical results of a model element with simplified boundary conditions.

  • PDF

Evaluation of Fracture Toughness on Interface Cracks in Bonded Components of Dissimilar Materials (이종 접합부재의 계면균열 파괴인성의 평가)

  • Chung, Nam-Yong;Lee, Myung-Dae;Park, Chul-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.346-351
    • /
    • 2003
  • In this paper, an evaluation method of fracture toughness on interface cracks has been investigated under various mixed-mode conditions of the bonded scarf joints. Two types of the bonded scarf joints with an interface crack were prepared to analyze the stress intensity factors using boundary element method(BEM) and to perform the fracture toughness test. From the results of fracture toughness experiments and BEM analysis, an evaluation method of fracture toughness on interface cracks in the bonded components of dissimilar materials has been proposed and discussed.

  • PDF

An Evaluation Method of Fracture Toughness on Interface Crack in Friction Welded Dissimilar Materials (이종 마찰용접재의 계면균열에 대한 파괴인성의 평가방법)

  • Chung, Nam-Yong;Park, Cheol-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.171-177
    • /
    • 2007
  • In this paper, an evaluation method of fracture toughness on interface cracks was investigated in friction welded dissimilar materials with interfacial edge cracks. To establish a reasonable strength evaluation method and fracture criterion, it is necessary to analyze stress intensity factor under the load and residual stress condition on friction welded interface between dissimilar materials. The friction welded specimens with an edged crack were prepared for analysis of stress intensity by using the boundary element method (BEM) and the fracture toughness. A quantitative fracture criterion for friction welded STS 304/SM 45C with interface crack is suggested by using stress intensity factor, F and the results of fracture toughness experiment.

Detection of Interface Crack Using Ultrasonic Method in Adhesively Bonded Joints (초음파 탐상법을 이용한 접착이음에 대한 계면 균열의 검출)

  • Jeong, Nam-Yong;Park, Seong-Il;Lee, Myeong-Dae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.415-423
    • /
    • 2001
  • In is well recognized that the ultrasonic method is one of the most common and reliable nondestructive testing(NDT) methods for the quantitative estimation of defects in welded structures. However, NDT techniques applying for adhesively bonded joints have not been clearly established yet. In this paper, the detection of interface crack by the ultrasonic method was applied for the measurement of interface crack length in the adhesively bonded joints of double-cantilever beam(DCB). The optimum condition of transmission coefficients and experimental accuracy by the ultrasonic method in the adhesively bonded joints have been investigated. The experimental values are in good agreement with the computed results by boundary element method(BEM) and Riplings equation.

A Study on the Enhancement of the Solution Accuracy of Meshless Particle Method (무요소절점법의 수치해 정도 향상을 위한 연구)

  • 이상호;김상효;강용규;박철원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.3-10
    • /
    • 1997
  • Meshless particle method is a numerical technique which does not use the concept of element. This method can easily handle special engineering problems which cause difficulty in the use of finite element method, however it has a drawback that essential boundary condition is not satisfied. In this paper, several studies for satisfying essential boundary conditions and enhancing the accuracy of solutions are discussed. Particular emphasis is placed on a new numerical technique in which finite elements are used on the boundaries to satisfy the essential boundary conditions and meshless particle method is used in the interior domain. For coupling of the two methods interface elements are introduced into the zone between the subdomains using meshless particle method and finite element method. The shape functions and the approximated displacement functions of the interface element are derived with the ramp function based on the shape function of finite elements. The whole numerical procedures are formulated by Galerkin method. Several numerical examples for enhancing the accuracy of solution in the meshless particle method and a new coupling method are presented.

  • PDF