• 제목/요약/키워드: Interface edge

Search Result 245, Processing Time 0.031 seconds

Development of IIoT Edge Middleware System for Smart Services (스마트서비스를 위한 경량형 IIoT Edge 미들웨어 시스템 개발)

  • Lee, Han;Hwang, Joon Suk;Kang, Dae Hyun;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.115-125
    • /
    • 2021
  • Due to various ICT Technology innovations and Digital Transformation, the Internet of Things(IoT) environment is increasingly requiring intelligence, decentralization, and automated service, especially an advanced and stable smart service environment in the Industrial Internet of Things(IIoT) where communication network(5G), data analysis and artificial intelligence(AI), and digital twin technology are combined. In this study, we propose IIoT Edge middleware systems for flexible interface with heterogeneous devices such as facilities and sensors at various industrial sites and for quick and stable data collection and processing.

Determination of Stress Intensity Factors for Bimaterial Interface Rigid Line Inclusions by Boundary Element Method (경계요소법을 이용한 접합재료 경계면의 직선균열형상의 강체 함유물에 대한 응력세기계수 결정)

  • Lee, Kang-Yong;Kwak, Sung-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.176-181
    • /
    • 2000
  • Stress intensity factors for a rigid line inclusion tying along a bimaterial interface are calculated by the boundary element method with the multiregion and double-Point techniques. The formula between the stress intensity factors and the inclusion surface stresses are derived. The numerical values of the stress intensity factors for the bimaterial interface rigid line inclusion in the infinite body are proved to be in good agreement within 3% when compared with the previous exact solutions. In the finite bimaterial systems, the stress intensity factors for the center and edge rigid line inclusions at interface are computed with the variation of the rigid line inclusion length and the shear modulus ratio under the biaxial and uniaxial loading conditions.

  • PDF

Internal Wave Computations based on a Discontinuity in Dynamic Pressure (동압 계수의 불연속성을 이용한 내면파의 수치해석)

  • 신상묵;김동훈
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.17-29
    • /
    • 2004
  • Internal waves are computed using a ghost fluid method on an unstructured grid. Discontinuities in density and dynamic pressure are captured in one cell without smearing or oscillations along a multimaterial interface. A time-accurate incompressible Navier-Stokes/Euler solver is developed based on a three-point backward difference formula for the physical time marching. Artificial compressibility is introduced with respect to pseudotime and an implicit method is used for the pseudotime iteration. To track evolution of an interface, a level set function is coupled with the governing equations. Roe's flux difference splitting method is used to calculate numerical fluxes of the coupled equations. To get higher order accuracy, dependent variables are reconstructed based on gradients which are calculated using Gauss theorem. For each edge crossing an interface, dynamic pressure is assigned for a ghost node to enforce the continuity of total pressure along the interface. Solitary internal waves are computed and the results are compared with other computational and experimental results.

Thermal Stresses near the Edge in a Clad (클래딩 자유단의 열응력 해석)

  • 김형남;최성남;장기상
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.104-109
    • /
    • 2000
  • Based on the principle of complementary energy, an analytical method is developed which focused on the end effects for determining thermal stress distributions in the clad beam. This method gives the stress distributions which completely satisfy the stress-free boundary condition at the edge. Numerical results shows that shear and peeling stress at the interface between the substrate and clad are significant near the edge and become negligible in the interior region. Even thought the relative location where the maximum or minimum stresses take place moves to interior as the length of the beam becomes smaller, the absolute location from the free end and the value of these stresses are the same in spite of the variation of the length of beam.

  • PDF

Thermal Stresses near the Edge in a Clad (클래딩 자유단의 열응력 해석)

  • 김형남;최성남;장기상
    • Proceedings of the KWS Conference
    • /
    • 1999.10a
    • /
    • pp.306-309
    • /
    • 1999
  • Based on the principle of complementary energy, an analytical method is developed which focused on the end effects for determining thermal stress distributions in the claded beam. This method gives the stress distributions which completely satisfy the stress-free boundary condition at the edge. Numerical result shows that shear stress and peeling stress at the interface between the substrate and clad are significant near the edge and become negligible in the interior region. Even though the relative location where the maximum or minimum stresses take place moves to interior as the length of the beam become smaller, the absolute location from the free end and the value of these stresses are the same in spite of the variation of the length of beam.

  • PDF

Computation of serrated trailing edge flow and noise using a hybrid zonal RANS-LES

  • Kim, Tae-Hyung;Lee, Seung-Hoon;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.414-419
    • /
    • 2012
  • The evaluation of a zonal RANS-LES approach is documented for the prediction of broadband noise generated by the flow past unmodified and serrated airfoil trailing edges at a high Reynolds number. A multi-domain decomposition is considered, where the acoustic sources are resolved with a LES sub-domain embedded in the RANS domain. A stochastic vortex method is used to generate synthetic turbulent perturbations at the RANS-LES interface. The simulations are performed with a general-purpose unstructured control-volume code FLUENT. The far-field noise is calculated using the aeroacoustic analogy of Ffowcs Williams-Hawkings. The results of the simulation are validated through the full-scaled wind turbine acoustic measurements. It is found that the present approach is adequate for predicting noise radiation of serrated trailing edge flow for low noise rotor system.

  • PDF

Computation of Serrated Trailing Edge Flow and Noise Using a Hybrid Zonal RANS-LES (혼합 영역 RANS-LES를 이용한 톱니 뒷전 유동 및 소음장의 계산)

  • Kim, Tae-Hyung;Lee, Seung-Hoon;Lee, Soo-Gab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.444-450
    • /
    • 2012
  • The evaluation of a zonal RANS-LES approach is documented for the prediction of broadband noise generated by the flow past unmodified and serrated airfoil trailing edges at a high Reynolds number. A multi-domain decomposition is considered, where the acoustic sources are resolved with a LES sub-domain embedded in the RANS domain. A stochastic vortex method is used to generate synthetic turbulent perturbations at the RANS-LES interface. The simulations are performed with a general-purpose unstructured control-volume code FLUENT. The far-field noise is calculated using the aeroacoustic analogy of Ffowcs Williams-Hawkings. The results of the simulation are validated through the full-scaled wind turbine acoustic measurements. It is found that the present approach is adequate for predicting noise radiation of serrated trailing edge flow for low noise rotor system.

The formation mechanism of grown-in defects in CZ silicon crystals based on thermal gradients measured by thermocouples near growth interfaces

  • Abe, Takao
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.402-416
    • /
    • 1999
  • The thermal distributions near the growth interface of 150nm CZ crystals were measured by three thermocouples installed at the center, middle (half radius) and edge (10nm from surface) of the crystals. The results show that larger growth rates produced smaller thermal gradients. This contradicts the widely used heat flux balance equation. Using this fact, it is confirmed in CZ crystals that the type of point defects created is determined by the value of the thermal gradient(G) near the interface during growth, as already reported for FZ crystals. Although depending on the growth systems the effective length of the thermal gradient for defect generation are varied, we defined the effective length as 10n,\m from th interface in this experiment. If the G is roughly smaller than 20C/cm, vacancy rich CZ crystals are produced. If G is larger than 25C/cm, the species of point defects changes dramatically from vacancies to interstitials. The experimental results after detaching FZ and CZ crystals from the melt show that growth interfaces are filled with vacancies. We propose that large G produces shrunk lattice spacing and in order to relax such lattice excess interstitials are necessary. Such interstitials recombine with vacancies which were generated at the growth interface, nest occupy interstitial sites and residuals aggregate themselves to make stacking faults and dislocation loops during cooling. The shape of the growth interface is also determined by te distributions of G across the interface. That is, the small G and the large G in the center induce concave and convex interfaces to the melts, respectively.

  • PDF

A Force-Reflecting Haptic interface using Ultrasonic Motors (초음파 모터를 이용한 힘 반영 촉각장치)

  • Shin, Duk;Oh, Geum-Kon;Kim, Young-Dong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.1
    • /
    • pp.111-118
    • /
    • 1999
  • Throughout this thesis, I describe the design, fabrication, and evaluation of the 3 DOF farce-reflecting haptic interface using USMs(ultrasonic motors). This haptic interface allows a htmlaIl "observer" to explore and interact with a virtual environrrent for the sense of touch. To effectively display the mechanical impedance of the htmlaIl hand we need a haptic device with specific characteristics, such as low inertia, alrmst zero friction and very high stiffness. USMs have attracted considerable attention as the actuator satisfied these conditions. An observer may grasp the end effector of revice and interact with surfaces and objects created within a virtual environment The revice provires force feedback, allowing users to "feel" objects within the environment. The device works very well, as users are able to detect the edge of the wall, the stiffness of the button and the puncture. TIle force-reflecting haptic interface could be suitable as a master for micro-surgery or as an interface to virtual reality training systems.

  • PDF