• Title/Summary/Keyword: Interface dose

Search Result 81, Processing Time 0.02 seconds

A Study on the Electron Beam Distribution based on Age-diffusion Model (Age diffusion model을 이용한 전자선량 분포에 대한 연구)

  • Kim, S.H.;Suh, T.S.;Na, Y.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.161-163
    • /
    • 1997
  • In this paper, a two-dimensional electron beam dose calculational algorithm implented for use in a two-dimensional radiation therapy planning system is described. The 2-D electron beam calculations have been in use clinically for a few decades. Our algorithm uses Age-diffusion model based int the Boltzman Transport Equation. Our implementation provides convenient user interface associated with electron beam therapy planning and displays radiation dose distribution according to different electron energy on patient images.

  • PDF

Suppression of Gate Oxide Degradation for MOS Devices Using Deuterium Ion Implantation Method

  • Lee, Jae-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.188-191
    • /
    • 2012
  • This paper introduces a new method regarding deuterium incorporation in the gate dielectric including deuterium implantation and post-annealing at the back-end-of-the process line. The control device and the deuterium furnace-annealed device were also prepared for comparison with the implanted device. It was observed that deuterium implantation at a light dose of $1{\times}10^{12}-1{\times}10^{14}/cm^2$ at 30 keV reduced hot-carrier injection (HCI) degradation and negative bias temperature instability (NBTI) within our device structure due to the reduction in oxide charge and interface trap. Deuterium implantation provides a possible solution to enhance the bulk and interface reliabilities of the gate oxide under the electrical stress.

Study on Structural properties of As Ion -Implanted Si (As이온이 주입된 Si의 구조적 특성 연구)

  • 믄영희;배인호;김말문;한병국;김창수;홍승수;신용현;정광화
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.218-222
    • /
    • 1996
  • STrained layers and strain depth profile of high dose As ion implanted (100) si wafer annealed at various temperatures have been investigated by means of X-ray double crystal diffractometry (X-ray DCD). The results obtained by x-ray rocking curve analysis showed a defect layer at the original amorphous /crystalline interface of 1400$\AA$ depth. In addition arsenic ion concentrtion profiles and defect distributions in depth were obtained by the SIMS and TRIM -code simulation . the positive strain depth profile determined from the rocking curve analysis were only presented under 0.14 $\mu$m from the surface for samples ananelaed at $600^{\circ}C$. The results was shown that the thickness of amprphous layer is 0.14 $\mu$m indirectry, and it was good agreement with the TRIM -Code simulation. Additionally, it could be thought that the positive strain have been affected residual intersitial atoms under the amorphous/crystalline interface formed by ion implantation.

  • PDF

The Worst-Case Optimal Design of An Interface Circuit for Satellite (Worst Case를 고려한 위성체 접속회로의 최적설계)

  • Lho, Yeung-Hwan;Lee, Sang-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.136-141
    • /
    • 2002
  • The electrical characteristics of solid state devices such as BJT(Bipolar Junction Transistor) and MOSFET, etc, are altered by impinging nuclear radiation and temperature in the space environment. This phenomenon is well known and has been studied extensively since the early 1960's when satellites were first being designed and used in the United States. However, the studies and the developments of radiation hardening technologies for the electronic components at the industrial fields in our country has not been popular so far. The worst case design technology in the electrical circuit is required for the appropriate operation of solid state devices in the space environment. In this paper, the interface circuit used in KOMPSAT(Korea Multipurpose Satellite), which is now being operated since the one was launched in 1999, is optimally designed to accomodate the worst case design and radiation effect.

Simulation of Characteristics Analysis by Total Ionizing Dose Effects in Partial Isolation Buried Channel Array Transistor (부분분리 매립 채널 어레이 트랜지스터의 총 이온화 선량 영향에 따른 특성 해석 시뮬레이션)

  • Je-won Park;Myoung-Jin Lee
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.303-307
    • /
    • 2023
  • In this paper, the creation of an Electron-Hole Pair due to Total Ionizing Dose (TID) effects inside the oxide of a Buried Channel Array Transistor (BCAT) device is induced, resulting in an increase in leakage current and threshold due to an increase in hole trap charge at the oxide interface. By comparing and simulating changes in voltage with the previously proposed Partial Isolation Buried Channel Array Transistor (Pi-BCAT) structure, the characteristics in leakage current and threshold voltage changed regardless of the increased oxide area of the Pi-BCAT device, compared to the asymmetrically doped BCAT structure. It shows superiority.

The Measurement of Dose Distribution in the Presence of Air Cavity and Underdosing Effect Result from Lack of Electronic Equilibrium (조사면 내 공동의 존재에 따른 선량분포의 변화측정)

  • Cho, Jung-Hee
    • Journal of radiological science and technology
    • /
    • v.19 no.1
    • /
    • pp.81-87
    • /
    • 1996
  • When high energy photon beam is incident upon an air cavity interface the effect of ionization build-up observed. This phenomenon is resulting from the surface layers of the lesions are significant deficiency of electrons reaching the layers because of the replacement of solid scattering material by the air cavity, that is lack of electronic equilibrium. Measurement have been made in an acrylic phantom with a parallel plate chamber and high energy Photon beams, CO-60, 4MV, 6MV and 10MV X-rays have been investigated. The result of our study show that a significant effect was measured and was determined to be very dependent on field size, air cavity dimension and photon energy. The reductions were much larger for 10MV beam, underdosage at the interface was 12, 12.2, 16.9 and 20.6% for the CO-60, 4 MV, 6MV and 10MV, respectively. It was found that this non-equilibrium effect at the interface is more severe for the higher energy beams than that of lower energy beams and the larger cavity dimensions it is, the larger beam reductions we have. This problem is of clinical concern when lesions such as carcinoma beyond air cavities are irradiated, such as larynx, glottic and the patients with maxillectomy and ethmoidectomy and so forth.

  • PDF

Effect of Proton Irradiation on the Magnetic Properties of Antiferromagnet/ferromagnet Structures

  • Kim, Dong-Jun;Park, Jin-Seok;Ryu, Ho Jin;Jeong, Jong-Ryul;Chung, Chang-Kyu;Park, Byong-Guk
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.159-163
    • /
    • 2016
  • Antiferromagnet (AFM)/ferromagnet (FM) bilayer structures are widely used in the magnetic devices of sensor and memory applications, as AFM materials can induce unidirectional anisotropy of the FM material via exchange coupling. The strength of the exchange coupling is known to be sensitive to quality of the interface of the AFM/FM bilayers. In this study, we utilize proton irradiation to modify the interface structures and investigate its effect on the magnetic properties of AFM/FM structures, including the exchange bias and magnetic thermoelectric effect. The magnetic properties of IrMn/CoFeB structures with various IrMn thicknesses are characterized after they are exposed to a proton beam of 3 MeV and $1{\sim}5{\times}10^{14}ions/cm^2$. We observe that the magnetic moment is gradually reduced as the amount of the dose is increased. On the other hand, the exchange bias field and thermoelectric voltage are not significantly affected by proton irradiation. This indicates that proton irradiation has more of an influence on the bulk property of the FM CoFeB layer and less of an effect on the IrMn/CoFeB interface.

Monte Carlo Based Planning System for a Beam Spoiler

  • 강세권;조병철;박희철;배훈식
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.56-56
    • /
    • 2003
  • For the treatment of superficial tumors like squamous cell carcinoma of the head and neck, 6 MV photon beam is not appropriate and a spoiler is widely used to increase dose in the buildup region, while preserving the skin sparing effect. However, commercially available treatment planning systems assume a normal unspoiled beam, thereby cannot predict the buildup dose with spoiler accurately. We aimed to implement a Monte Carlo (MC) based planning system to apply it to the radiation treatment of head and neck. Lucite with thickness of 10-mm was used for the beam spoiler with Siemens Primus 6 MV photon beam. BEAM/DOSXYZ MC system was employed to model the linac and the spoiler. To verify the calculation accuracy of MC simulations, the percent depth doses (PDDs) and profiles with and without spoiler were measured using a parallel-plate chamber. For the MC based planning, we adopted a hybrid interface system between Pinnacle (Philips, USA) and BEAM/DOSXYZ to support treatment parameters of Siemens linac and the spoiler. The measurements of PDDs and profiles agreed with the corresponding MC simulations within 2% (lSD), which demonstrate the reliability of our MC simulations. The spoiler generated electrons make a contribution to the absorbed dose up to depth of 2cm, which shows that the dominant source of increased dose from spoiler system is the contaminating electrons created by the spoiler. The whole procedures necessary for MC based treatment planning were performed seamlessly between Pinnacle and BEAM/DOSXYZ system. This ability helps to increase the clinical efficiency of the spoiler technique. In conclusion, we implemented a MC based treatment planning system for a 6 MV photon beam with a spoiler. We demonstrate sophisticated MC technique makes it possible to predict dose distributions around buildup region accurately.

  • PDF

Inhibitors of apoptosis: expression and regulation in the endometrium during the estrous cycle and at the maternal-conceptus interface during pregnancy in pigs

  • Yoo, Inkyu;Jung, Wonchul;Lee, Soohyung;Cheon, Yugyeong;Ka, Hakhyun
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.533-543
    • /
    • 2022
  • Objective: Caspase-mediated apoptosis plays a crucial role in the regulation of endometrial and placental function in females. Caspase activity is tightly controlled by members of the inhibitors of apoptosis proteins (IAPs) family. However, the expression and regulation of IAPs at the maternal-conceptus interface has not been studied in pigs. Therefore, we determined the expression of IAP family members baculovirus IAP repeat-containing 1 (BIRC1) to BIRC6 at the maternal-conceptus interface in pigs. Methods: We obtained endometrial tissues from pigs at various stages of the estrous cycle and pregnancy, conceptus tissues during early pregnancy, and chorioallantoic tissues during mid- to late pregnancy and analyzed the expression of IAPs. Furthermore, we determined the effects of the steroid hormones estradiol-17β (E2) and progesterone on the expression of IAPs in endometrial explant tissue cultures. Results: During the estrous cycle, BIRC2 and BIRC5 expression varied cyclically, and during pregnancy, endometrial BIRC1, BIRC2, BIRC3, BIRC4, and BIRC5 expression varied in a stage-specific manner. Conceptus and chorioallantoic tissues also expressed IAPs during pregnancy. The BIRC2 and BIR3 mRNAs were localized to luminal epithelial cells, and BIRC4 proteins to glandular epithelial cells in the endometrium. Exposure of endometrial tissues to E2 increased the expression of BIRC6, while progesterone increased the expression of BIRC1, BIRC4, and BIRC6 in a dose-dependent manner. Conclusion: These results indicated that IAPs were expressed in the endometrium during the estrous cycle and at the maternal-conceptus interface during pregnancy in a stage-specific manner. In addition, steroid hormones were found to be responsible for the expression of some IAPs in pigs. Together, the results suggested that IAPs may play important roles in endometrial and placental functions by regulating caspase action and apoptosis at the maternal-conceptus interface.

The Electrical Characteristics of MOSFET having Deuterium implanted Gate Oxide (중수소 이온 주입된 게이트 산화막을 갖는 MOSFET의 전기적 특성)

  • Lee, Jae-Sung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.4
    • /
    • pp.13-19
    • /
    • 2010
  • MOSFET with deuterium-incorporated gate oxide shows enhanced reliability compared to conventional MOSFET. We present an alternative process whereby deuterium is delivered to the location where the gate oxide reside by an implantation process. Deuterium ions were implanted using two different energies to account for the topography of the overlaying layers and placing the D peak at the top of gate oxide. A short anneal at forming gas was performed to remove the D-implantation damage. We have observed that deuterium ion implantation into the gate oxide region can successfully remove the interface states and the bulk defects. But the energy and the dose of the deuterium implant need to be optimized to maintain the Si substrates dopant activation, while generating deuterium bonds inside gate oxide. CV and IV characteristics studies also determined that the deuterium implant dose not degrade the transistor performance.