• Title/Summary/Keyword: Interface bonding

Search Result 710, Processing Time 0.038 seconds

Experimental Study on the Interface Bonding Characteristics of a Pin-bushing Bearing (핀부시 베어링 소재의 계면접합특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.315-319
    • /
    • 2008
  • This paper presents the interface bonding characteristics between a phosphor bronze and a steel plate for pin-bush bearings. The pin-bush bearing is an important component in which is used to reduce a friction loss and a wear against the piston pin. The pin-bush bearing is manufactured by hot-pressing a phosphor bronze and a back metal of a steel plate. This paper investigated the bonding interface characteristics in which is manufactured by melting a copper based bronze and a steel plate. The hardness from the inner surface of a bronze to the outer one of steel has been measured using a Vickers hardness tester. The experimental results show that the hardness of a bronze is superior to that of the conventional bronze and the transient hardness of pin-bush bearings is gradually increasing to the hardness of the steel back metal. This means that the bonding interface zone of pin-bush bearings may be fabricated by defusing a bronze to the steel plate due to a density difference between two materials.

Ultrasonic Test Criterion for the Explosively Welded Fe-Naval Brass Bonding Quality (초음파법에 의한 폭발접합 이종금속 접합품질 판정레벨 설정에 관한 연구)

  • 장영권;백영남
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.40-48
    • /
    • 2001
  • An ultrasonic test method, as a nondestructive test is applied to ensure the clad interface quality assessment. According to the reference codes and standards, not only korea Industrial Standard(KS) but also American Society for Testing and Materials (ASTM) Standard, ultrasonic examination procedures use the pulse-echo, A-scan, back reflection signal drop method and/or side drilled reference hole used to establish the acceptance criteria of clad material test. But the variety of bonding materials and sizes makes it difficult to produce the reference blocks, or thus the criteria. In order to overcome these practical difficulties, new ultrasonic testing criterion is suggested. In this new method, the theoretical interface reflection signal amplitude level is calculated and suggested as an acceptance criteria with the back reflection signal set to 100% FSH(Full Screen Height) which is based on acoustic impedance mismatch at the clad interface for the explosive clad ultrasonic inspection. Applicability of suggested criterion, for the explosive clad Fe-Naval Brass with different bonding quality is confirmed to the pre-existed KS and ASTM specifications and verified by using SEM (Seanning Electron Microscope) micrograph. The results obtained by the suggested method is more conservative than the results according to the KS B 0234 and ASTM A 578 specifications The suggested method could be applicable to any other combination of explosive clad ultrasonic inspection.

  • PDF

Flexural Capacity Evaluation of Reinforced Concrete Members with Corroded Steel Expansion and Debonding Area at the Interface Steel to Concrete Surface (철근부식 팽창 및 비부착 구간에 따른 RC 부재의 휨 성능 평가)

  • Jung, Woo-Young;Beak, Sang-Hoon;Yeon, Jong-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.7-13
    • /
    • 2008
  • This paper presents experimental and analysis studies about both the corroded steel expansion and the variation of poor bonding range between steel and concrete. A loss of overall bonding capacity at the concrete-steel interface is evaluated experimentally and crack patterns at the bottom of the concrete are presented here. Steel-concrete interface is covered by rubber due to present local loss of the concrete-steel interface bonding capacity. In case of crack analysis performed by commercial FEM programs. we investigated crack‘s pattern and location. Finally, it is concluded that overall flexural capacity of the reinforced concrete structure is increased by the corroded steel expansion and is dependent of the bonding range at the steel- concrete interface. These results give an important factor to decide a life of reinforced concrete structures.

Characterization of TLP Bonded of Magnesium AZ31 Alloy using a Nickel Interlayer (Ni 삽입재를 사용한 마그네슘 AZ31 합금의 TLP접합 특성평가)

  • Jin, Yeung Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.113-119
    • /
    • 2013
  • The transient liquid phase (TLP) bonding was used to fabricate autogenous joints in a magnesium alloy AZ31 with the aid of a pure Ni interlayer. A $13{\mu}m$ thick pure Ni foil was used in order to form a Mg-Ni eutectic liquid at the joint interface. The interface of reaction and composition profiles were investigated as a function of bonding time using a pressure of 0.16 MPa and a bonding temperature of $515^{\circ}C$. The quality of the joints produced was examined by metallurgical characterization and the joint microstructure developed across the diffusion bonds was related to changes in mechanical properties as a function of the bonding time.

Nonlinear finite element analysis of effective CFRP bonding length and strain distribution along concrete-CFRP interface

  • Dogan, Ali Baran;Anil, Ozgur
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.437-453
    • /
    • 2010
  • CFRP has been widely used for strengthening reinforced concrete members in last decade. The strain transfer mechanism from concrete face to CFRP is a key factor for rigidity, ductility, energy dissipation and failure modes of concrete members. For these reasons, determination of the effective CFRP bonding length is the most crucial step to achieve effective and economical strengthening. In this paper, generalizations are made on effective bonding length by increasing the amount of test data. For this purpose, ANSYS software is employed, and an experimentally verified nonlinear finite element model is prepared. Special contact elements are utilized along the concrete-CFRP strip interface for investigating stress distribution, load-displacement behavior, and effective bonding length. Then results are compared with the experimental results. The finite element model found consistent results with the experimental findings.

Direct Bonding Characteristics of 2" 3C-SiC Wafers for Harsh Environment MEMS Applications (극한 환경 MEMS용 2" 3C-SiC기판의 직접접합 특성)

  • 정귀상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.700-704
    • /
    • 2003
  • This paper describes on characteristics of 2" 3C-SiC wafer bonding using PECVD (plasma enhanced chemical vapor deposition) oxide and HF (hydrofluoride acid) for SiCOI (SiC-on-Insulator) structures and MEMS (micro-electro-mechanical system) applications. In this work, insulator layers were formed on a heteroepitaxial 3C-SiC film grown on a Si (001) wafer by thermal wet oxidation and PECVD process, successively. The pre-bonding of two polished PECVD oxide layers made the surface activation in HF and bonded under applied pressure. The bonding characteristics were evaluated by the effect of HF concentration used in the surface treatment on the roughness of the oxide and pre-bonding strength. Hydrophilic character of the oxidized 3C-SiC film surface was investigated by ATR-FTIR (attenuated total reflection Fourier transformed infrared spectroscopy). The root-mean-square suface roughness of the oxidized SiC layers was measured by AFM (atomic force microscope). The strength of the bond was measured by tensile strength meter. The bonded interface was also analyzed by IR camera and SEM (scanning electron microscope), and there are no bubbles or cavities in the bonding interface. The bonding strength initially increases with increasing HF concentration and reaches the maximum value at 2.0 % and then decreases. These results indicate that the 3C-SiC wafer direct bonding technique will offers significant advantages in the harsh MEMS applications.ions.

A study on pre-bonding mechanism of Si wafer at HF pre-treatment (HF 전처리시 실리콘 기판의 초기접합 메카니즘에 관한 연구)

  • Kang, Kyung-Doo;Park, Chin-Sung;Lee, Chae-Bong;Ju, Byung-Kwon;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3313-3315
    • /
    • 1999
  • Si direct bonding(SDB) technology is very attractive for both Si-on-insulator(SOI) electric devices and MEMS applications because of its stress free structure and stability. This paper presents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, and applied pressure. The bonding strength was evaluated by tensile strength method. The bonded interface and the void were analyzed by using SEM and IR camera respectively. A bond characteristic on the interface was analyzed by using IT- IR. Si-F bonds on Si surface after HF pre-treatment are replaced by Si-OH during a DI water rinse. Consequently, hydrophobic wafer was bonded by hydrogen bonding of Si $OH{\cdots}(HOH{\cdots}HOH{\cdots}HOH){\cdots}OH-Si$. The bond strength depends on the HF pre-treatment condition before pre- bonding (Min:$2.4kgf/crn^2{\sim}Max:14.9kgf/crn^2$)

  • PDF

Bonding Properties of 14K White-Red Gold Alloy by Diffusion Bonding Process (14K 화이트-레드골드의 확산접합 공정에 따른 접합 물성 연구)

  • Song, Jeongho;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.386-391
    • /
    • 2017
  • Using a customized diffusion bonder, we executed diffusion bonding for ring shaped white gold and red gold samples (inner, outer diameter, and thickness were 15.7, 18.7, and 3.0 mm, respectively) at a temperature of $780^{\circ}C$ and applied pressure of 2300 N in a vacuum of $5{\times}10^{-2}$ torr for 180 seconds. Optical microscopy, field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to investigate the microstructure and compositional changes. The mechanical properties were confirmed by Vickers hardness and shear strength tests. Optical microscopy and FE-SEM confirmed the uniform bonding interface, which was without defects such as micro pores. EDS mapping analysis confirmed that each gold alloy was 14K with the intended composition; Ni and Cu was included as coloring metals in the white and red gold alloys, respectively. The effective diffusion coefficient was estimated based on EDS line scanning. Individual values of Ni and Cu were $5.0{\times}10^{-8}cm^2/s$ and $8.9{\times}10^{-8}cm^2/s$, respectively. These values were as large as those of the melting points due to the accelerated diffusion in this customized diffusion bonder. Vickers hardness results showed that the hardness values of white gold and red gold were 127.83 and 103.04, respectively, due to solid solution strengthening. In addition, the value at the interface indicated no formation of intermetallic compound around the bonding interface. From the shear strength test, the sample was found not to be destroyed at up to 100,000 gf due to the high bonding strength. Therefore, these results confirm the successful diffusion bonding of 14K white-red golds with a diffusion bonder at a low temperature of $780^{\circ}C$ and a short processing time of 180 seconds.

Bonding Properties of Epoxy-Concrete Interface in RC Beams Strengthened by Steel Plate (강판으로 보강된 RC보의 에폭시-콘크리트 계면의 부착특성)

  • 박윤제;신동혁;이광명;신현목
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.221-227
    • /
    • 2001
  • Both strength and stiffness of RC structures strengthened by a steel plate greatly increase and however, their ductility might not be sufficient because premature failures usually occur at the adhesive-concrete interface. In this study, Mohr-Coulomb criterion was adopted to examine the bonding failure mechanism, and the diagonal shear bonding test, the direct shear bonding test, and the flexural test on RC beams strengthened by a steel plate were carried out to measure the bonding properties. It is found from the experimental and numerical results that the cohesive strengths of epoxy-concrete interfaces are ranging from 50 kgf/㎠ to 70 kgf/㎠ when the friction angle is 45°. Bonding failure loads can be predicted by applying the bonding properties to the structural analysis of RC beams strengthened by steel plate. By considering them in the design of strengthened beams, the premature failure would be effectively prevented.

FE-SEM Image Analysis of Junction Interface of Cu Direct Bonding for Semiconductor 3D Chip Stacking

  • Byun, Jaeduk;Hyun, June Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.207-212
    • /
    • 2021
  • The mechanical and electrical characteristics can be improved in 3D stacked IC technology which can accomplish the ultra-high integration by stacking more semiconductor chips within the limited package area through the Cu direct bonding method minimizing the performance degradation to the bonding surface to the inorganic compound or the oxide film etc. The surface was treated in a ultrasonic washer using a diamond abrasive to remove other component substances from the prepared cast plate substrate surface. FE-SEM was used to analyze the bonding characteristics of the bonded copper substrates, and the cross section of the bonded Cu conjugates at the sintering junction temperature of 100 ℃, 150 ℃, 200 ℃, 350 ℃ and the pressure of 2303 N/cm2 and 3087 N/cm2. At 2303 N/cm2, the good bonding of copper substrate was confirmed at 350 ℃, and at the increased pressure of 3087 N/cm2, the bonding condition of Cu was confirmed at low temperature junction temperature of 200 ℃. However, the recrystallization of Cu particles was observed due to increased pressure of 3087 N/cm2 and diffusion of Cu atoms at high temperature of 350 ℃, which can lead to degradation in semiconductor manufacturing.