• 제목/요약/키워드: Interest Prediction

검색결과 465건 처리시간 0.027초

Stereo Image Quality Assessment Using Visual Attention and Distortion Predictors

  • Hwang, Jae-Jeong;Wu, Hong Ren
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권9호
    • /
    • pp.1613-1631
    • /
    • 2011
  • Several metrics have been reported in the literature to assess stereo image quality, mostly based on visual attention or human visual sensitivity based distortion prediction with the help of disparity information, which do not consider the combined aspects of human visual processing. In this paper, visual attention and depth assisted stereo image quality assessment model (VAD-SIQAM) is devised that consists of three main components, i.e., stereo attention predictor (SAP), depth variation (DV), and stereo distortion predictor (SDP). Visual attention is modeled based on entropy and inverse contrast to detect regions or objects of interest/attention. Depth variation is fused into the attention probability to account for the amount of changed depth in distorted stereo images. Finally, the stereo distortion predictor is designed by integrating distortion probability, which is based on low-level human visual system (HVS), responses into actual attention probabilities. The results show that regions of attention are detected among the visually significant distortions in the stereo image pair. Drawbacks of human visual sensitivity based picture quality metrics are alleviated by integrating visual attention and depth information. We also show that positive correlation with ground-truth attention and depth maps are increased by up to 0.949 and 0.936 in terms of the Pearson and the Spearman correlation coefficients, respectively.

Design and Implementation of GIS Based Automatic Terrain Analysis System for Field Operation

  • Kim, Kyoung-Ok;Yang, Young-Kyu;Lee, Jong-Hoon;Choi, Kyoung-Ho;Jung, In-Sook;Kim, Tae-Kyun
    • 대한원격탐사학회지
    • /
    • 제10권2호
    • /
    • pp.121-132
    • /
    • 1994
  • A GIS based tactical terrain analysis system named ATTAS(Army Tactical Terrain Analysis Software) has been designed and implemented to support the field commanders for enhancing the capabiliy of their unit and efficiency of weapon system. This system is designed to provide computer graphics environment in which the analyst can interactively operate the entire analyzing process such as selecting the area of interest, performing analysis functions, simulating required battlefield operation and display the results. This system can be divided into three major sections; the terrain analysis modules, utilites, and graphic editor. The terrain analysis module inclused surface analysis, line of sight analysis, enemy disposition, 3D display, radar coverage, logistic route analysis, shortest path analysis, atmospheric phenomena prediction, automated IPB (Inteligence preparation of Battlefield), and other applied analysis. A combination of 2D and 3D computer graphics techniques using the X-window system with OSF/Motif in UNIX workstation was adopted as the user interface. The integration technique of remotely sensed images and GIS data such as precision registration, overlay, and on-line editing was developed and implemented. An efficient image and GIS data management technique was also developed and implemented using Oracle Database Management System.

Comparison of different post-processing techniques in real-time forecast skill improvement

  • Jabbari, Aida;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.150-150
    • /
    • 2018
  • The Numerical Weather Prediction (NWP) models provide information for weather forecasts. The highly nonlinear and complex interactions in the atmosphere are simplified in meteorological models through approximations and parameterization. Therefore, the simplifications may lead to biases and errors in model results. Although the models have improved over time, the biased outputs of these models are still a matter of concern in meteorological and hydrological studies. Thus, bias removal is an essential step prior to using outputs of atmospheric models. The main idea of statistical bias correction methods is to develop a statistical relationship between modeled and observed variables over the same historical period. The Model Output Statistics (MOS) would be desirable to better match the real time forecast data with observation records. Statistical post-processing methods relate model outputs to the observed values at the sites of interest. In this study three methods are used to remove the possible biases of the real-time outputs of the Weather Research and Forecast (WRF) model in Imjin basin (North and South Korea). The post-processing techniques include the Linear Regression (LR), Linear Scaling (LS) and Power Scaling (PS) methods. The MOS techniques used in this study include three main steps: preprocessing of the historical data in training set, development of the equations, and application of the equations for the validation set. The expected results show the accuracy improvement of the real-time forecast data before and after bias correction. The comparison of the different methods will clarify the best method for the purpose of the forecast skill enhancement in a real-time case study.

  • PDF

프로펠러 단독시험에 있어서 불확실성 해석 (Uncertainty Analysis for the Propeller Open Water Test)

  • 최군일;전호환;김재신;이정묵
    • 대한조선학회논문집
    • /
    • 제31권1호
    • /
    • pp.71-83
    • /
    • 1994
  • 프로펠러 단독시험에 대한 불확실성 해석을 수행하였다. 계측 값 및 계측 값으로부터 얻어진 결과에 대한 오차 원인, 요소 오차, 추정 오차, 오차 전파 및 이들의 감도 등에 대해서 자세히 언급하였다. 현대선박해양연구소에서 수행한 프로펠러 단독시험 결과에 대한 오차 한계는 일반 시험 결과의 오차 한계 ${\pm}2%$보다 적은 ${\pm}1%$로 나타났다. 이러한 불확실성 해석 수행으로 주오차 원인들을 쉽게 파악할 수 있으며 아울러 시험 정도 향상에도 유용하게 쓰여짐을 알 수 있었다.

  • PDF

Use of Monte Carlo code MCS for multigroup cross section generation for fast reactor analysis

  • Nguyen, Tung Dong Cao;Lee, Hyunsuk;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2788-2802
    • /
    • 2021
  • Multigroup cross section (MG XS) generation by the UNIST in-house Monte Carlo (MC) code MCS for fast reactor analysis using nodal diffusion codes is reported. The feasibility of the approach is quantified for two sodium fast reactors (SFRs) specified in the OECD/NEA SFR benchmark: a 1000 MWth metal-fueled SFR (MET-1000) and a 3600 MWth oxide-fueled SFR (MOX-3600). The accuracy of a few-group XSs generated by MCS is verified using another MC code, Serpent 2. The neutronic steady-state whole-core problem is analyzed using MCS/RAST-K with a 24-group XS set. Various core parameters of interest (core keff, power profiles, and reactivity feedback coefficients) are obtained using both MCS/RAST-K and MCS. A code-to-code comparison indicates excellent agreement between the nodal diffusion solution and stochastic solution; the error in the core keff is less than 110 pcm, the root-mean-square error of the power profiles is within 1.0%, and the error of the reactivity feedback coefficients is within three standard deviations. Furthermore, using the super-homogenization-corrected XSs improves the prediction accuracy of the control rod worth and power profiles with all rods in. Therefore, the results demonstrate that employing the MCS MG XSs for the nodal diffusion code is feasible for high-fidelity analyses of fast reactors.

Prediction of Axial Solid Holdups in a CFB Riser

  • Park, Sang-Soon;Chae, Ho-Jeong;Kim, Tae-Wan;Jeong, Kwang-Eun;Kim, Chul-Ung;Jeong, Soon-Yong;Lim, JongHun;Park, Young-Kwon;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • 제56권6호
    • /
    • pp.878-883
    • /
    • 2018
  • A circulating fluidized bed (CFB) has been used in various chemical industries because of good heat and mass transfer. In addition, the methanol to olefins (MTO) process requiring the CFB reactor has attracted a great deal of interest due to steep increase of oil price. To design a CFB reactor for MTO pilot process, therefore, we has examined the hydrodynamic properties of spherical catalysts with different particle size and developed a correlation equation to predict catalyst holdup in a riser of CFB reactor. The hydrodynamics of micro-spherical catalysts with average particle size of 53, 90 and 140 mm was evaluated in a $0.025m-ID{\times}4m-high$ CFB riser. We also developed a model described by a decay coefficient to predict solid hold-up distribution in the riser. The decay coefficient developed in this study could be expressed as a function of Froude number and dimensionless velocity ratio. This model could predict well the experimental data obtained from this work.

Towards Improving Causality Mining using BERT with Multi-level Feature Networks

  • Ali, Wajid;Zuo, Wanli;Ali, Rahman;Rahman, Gohar;Zuo, Xianglin;Ullah, Inam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권10호
    • /
    • pp.3230-3255
    • /
    • 2022
  • Causality mining in NLP is a significant area of interest, which benefits in many daily life applications, including decision making, business risk management, question answering, future event prediction, scenario generation, and information retrieval. Mining those causalities was a challenging and open problem for the prior non-statistical and statistical techniques using web sources that required hand-crafted linguistics patterns for feature engineering, which were subject to domain knowledge and required much human effort. Those studies overlooked implicit, ambiguous, and heterogeneous causality and focused on explicit causality mining. In contrast to statistical and non-statistical approaches, we present Bidirectional Encoder Representations from Transformers (BERT) integrated with Multi-level Feature Networks (MFN) for causality recognition, called BERT+MFN for causality recognition in noisy and informal web datasets without human-designed features. In our model, MFN consists of a three-column knowledge-oriented network (TC-KN), bi-LSTM, and Relation Network (RN) that mine causality information at the segment level. BERT captures semantic features at the word level. We perform experiments on Alternative Lexicalization (AltLexes) datasets. The experimental outcomes show that our model outperforms baseline causality and text mining techniques.

An Enhanced Neural Network Approach for Numeral Recognition

  • Venugopal, Anita;Ali, Ashraf
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.61-66
    • /
    • 2022
  • Object classification is one of the main fields in neural networks and has attracted the interest of many researchers. Although there have been vast advancements in this area, still there are many challenges that are faced even in the current era due to its inefficiency in handling large data, linguistic and dimensional complexities. Powerful hardware and software approaches in Neural Networks such as Deep Neural Networks present efficient mechanisms and contribute a lot to the field of object recognition as well as to handle time series classification. Due to the high rate of accuracy in terms of prediction rate, a neural network is often preferred in applications that require identification, segmentation, and detection based on features. Neural networks self-learning ability has revolutionized computing power and has its application in numerous fields such as powering unmanned self-driving vehicles, speech recognition, etc. In this paper, the experiment is conducted to implement a neural approach to identify numbers in different formats without human intervention. Measures are taken to improve the efficiency of the machines to classify and identify numbers. Experimental results show the importance of having training sets to achieve better recognition accuracy.

창업 생태계 품질이 창업 성과에 미치는 영향 (Effect of Entrepreneurial Ecosystem Quality on Entrepreneurship Performance)

  • 이은지;조영주
    • 품질경영학회지
    • /
    • 제50권3호
    • /
    • pp.305-332
    • /
    • 2022
  • Purpose: As the public interest in entrepreneurship has been highlighted and entrepreneurship policies have been generated, this study is to construct Entrepreneurship Ecosystem (EE) models which have a significant relationship to national entrepreneurship with quantitative analysis. It aims to provide implications to EE policymakers that which national components are effective in cultivating innovative entrepreneurship and validate its EE quality based on quantitative performance goals. Methods: This study utilizes secondary data, categorized under the PESTLE factor from credible international organizations (WB, UNDP, GEM, GEDI, and OECD) to determine significant factors in the quality of the entrepreneurial ecosystem. This paper uses the Multiple Linear Regression (MLR) analysis to select the significant variables contributing to entrepreneurship performance. Using the AUC-ROC performance evaluation method for machine learning MLR results, this paper evaluates the performance of EE models so that it can allow approving EE quality by predicting potential performance. Results: Among nine hypothesis models, MLR analysis examines that the number of the Unicorn company, Unicorn companies' economic value, and entrepreneurship measured as GEI can be reasonable dependent variables to indicate the performance derived from EE quality. Rather than government policies and regulations, the social, finance, technology, and economic variables are significant factors of EE quality determining its performance. By having high Area Under Curve values under AUC-ROC analysis, accepted MLR models are regarded as having high prediction accuracy. Conclusion: Superior EE contributes to the outstanding Unicorn companies, and improvement in macro-environmental components can enhance EE quality.

Multimodal Attention-Based Fusion Model for Context-Aware Emotion Recognition

  • Vo, Minh-Cong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • 제18권3호
    • /
    • pp.11-20
    • /
    • 2022
  • Human Emotion Recognition is an exciting topic that has been attracting many researchers for a lengthy time. In recent years, there has been an increasing interest in exploiting contextual information on emotion recognition. Some previous explorations in psychology show that emotional perception is impacted by facial expressions, as well as contextual information from the scene, such as human activities, interactions, and body poses. Those explorations initialize a trend in computer vision in exploring the critical role of contexts, by considering them as modalities to infer predicted emotion along with facial expressions. However, the contextual information has not been fully exploited. The scene emotion created by the surrounding environment, can shape how people perceive emotion. Besides, additive fusion in multimodal training fashion is not practical, because the contributions of each modality are not equal to the final prediction. The purpose of this paper was to contribute to this growing area of research, by exploring the effectiveness of the emotional scene gist in the input image, to infer the emotional state of the primary target. The emotional scene gist includes emotion, emotional feelings, and actions or events that directly trigger emotional reactions in the input image. We also present an attention-based fusion network, to combine multimodal features based on their impacts on the target emotional state. We demonstrate the effectiveness of the method, through a significant improvement on the EMOTIC dataset.