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Abstract 
 

Several metrics have been reported in the literature to assess stereo image quality, mostly 

based on visual attention or human visual sensitivity based distortion prediction with the help 

of disparity information, which do not consider the combined aspects of human visual 

processing. In this paper, visual attention and depth assisted stereo image quality assessment 

model (VAD-SIQAM) is devised that consists of three main components, i.e., stereo attention 

predictor (SAP), depth variation (DV), and stereo distortion predictor (SDP). Visual attention 

is modeled based on entropy and inverse contrast to detect regions or objects of 

interest/attention. Depth variation is fused into the attention probability to account for the 

amount of changed depth in distorted stereo images. Finally, the stereo distortion predictor is 

designed by integrating distortion probability, which is based on low-level human visual 

system (HVS), responses into actual attention probabilities. The results show that regions of 

attention are detected among the visually significant distortions in the stereo image pair. 

Drawbacks of human visual sensitivity based picture quality metrics are alleviated by 

integrating visual attention and depth information. We also show that positive correlation with 

ground-truth attention and depth maps are increased by up to 0.949 and 0.936 in terms of the 

Pearson and the Spearman correlation coefficients, respectively. 
 

 

Keywords: Image quality assessment, stereo image processing, visual attention, 3D depth, 

distortion predictor 
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1. Introduction 

With the advanced development of data compression, visualization and display technologies, 

and the availability of ever increasing transmission channel bandwidth, multiview or 3-D 

(three-dimensional) imaging has been deployed to enhance the viewing experience or sense of 

realism that is comparable to the natural scene. This trend towards immersive media is going 

to have a wide range of applications such as 3-D TV, 3-D cinemas, 3-D gaming, virtual reality, 

etc. [1][2]. Though many efforts have been made to develop 2-D objective image quality 

measurements and metrics, relatively few reported in the literature have concentrated on 3-D 

objective quality assessment [3]. Picture quality assessment of coded video sequences can, 

currently, only be performed reliably using expensive and inconvenient subjective tests [4][5], 

notwithstanding a number of objective video quality metrics reported most recently 

[6][7][8][9]. Furthermore, the analysis of the obtained results is not straightforward. To enable 

3-D imaging systems to provide a realistic 3-D information in a timely fashion, it is essential 

that reliable objective measures are found. 

Up to now, only a few objective assessment methods for stereo images have been reported, 

which use depth map to assess stereo perception. There are two issues associated with depth 

map computation. First, computing depth maps for images is a highly computationally 

intensive and time consuming process. Second, it is hard to determine what degree of depth is 

good or bad. The sense of stereo vision is obtained from the difference between the view 

points of the two eyes. The vector between two corresponding points in the left and the right 

images of a stereopair is called disparity [10]. Finding the best matching points between two 

images is known as the correspondence problem. Depth value is the distance between a scene 

point and the camera baseline. It is inversely proportional to disparity value. 

A viewer‟s 3-D perception is different for individual stereoscopic displays and human 

viewers can cope with a large variation of the perceived depth range. Thus, the depth mapping 

needs to be carried out dynamically to avoid excessive perceived depth [11]. Cepstrum 

filtering can be used in finding disparity in the frequency or the spatial domain [12]. Visual 

perception is the result of the integration of not only binocular disparity, but also motion 

parallax and image-realism cues [13]. Display duration is also a factor affecting visual 

perception [14]. 

Quality assessment metrics used for 2-D images can be applied to 3-D images with careful 

consideration and depth information [15]. Benoit et al. proposed a stereo quality metric by 

measuring, first, the difference between original images and the corresponding distorted 

version [16]. Corresponding left and right images are assessed by a 2-D metric such as the 

SSIM (Structural SIMilarity index) [17] or the C4 [18]. The two measures per pair are 

averaged in order to get the global 2-D image distortion measure. The second step is to assess 

the 3-D picture quality by measuring the difference between the disparity map of the original 

images and that of the distorted images. It is plausible to argue that perceptual-based distortion 

metrics cannot be applied here, since disparity maps are not natural images. Hewage 

introduced a “color plus depth map” based stereoscopic video assessment in order to design a 

scalable video codec that subjective and objective evaluations are optimally correlated [19]. 

Shen also proposed an enhanced SSIM metric by considering physiological and psychological 

factors of visual information [20]. 

Yang et al [21] presented a simple method that does not use depth map. Two types of 

objective assessment are taken into account, i.e., the image quality assessment (IQA) and the 
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stereo sense assessment (SSA). The former is performed by the arithmetic mean of the left and 

the right images assessed in term of the PSNR (peak signal to noise ratio), while the latter 

deals with stereo distortions. Disparity information is still measured by the absolute difference 

image between left and right image pairs. Disparity with low magnitude is removed, since it 

does not affect the outcome of quality assessment. Finally, the SSA is performed by only 

considering meaningful points in term of the PSNR. In [22], quality scores on both left and 

right images are evaluated by means of conventional metrics. Then, in order to obtain a single 

measurement for the quality assessment of the stereo image, the two scores are combined 

taking account of average, main eye and visual acuity. 

Depth information can be used to calculate sharpness of edge distortion, since the distorted 

edge results in blurred artifact when viewing 3-D synthesis image. In [23], CSED (color and 

sharpness of edge distortion) metric is implemented. Color distortion measures the luminance 

loss of the test image pair and sharpness of edge distortion calculates the proportion of the 

remaining edge to the original edge along the boundary of the whole artifact region in the 3-D 

image rendering. 

With respect to the block-based image coding, the stereo quality can be predicted to 

enhance the codec performance [24]. Blocking artifacts are measured, first, based on 

segmentation of the left and the right images separately into either edge, flat, and texture 

blocks. Second, zero crossing rate within each (8x8) pixel block is measured and a 

differencing zero crossing rate is determined between the same corresponding block of the left 

and the right images. The blockiness and the zero crossing disparity measurements are 

combined for final prediction of the mean opinion score (MOS) in a nonlinear equation. Stereo 

image quality prediction is useful to reconstruct the right view, if it is absent, since the left 

view shares a lot on common or similar information with its right view [25] in the depth image 

based rendering (DIBR) [26]. One view is encoded in high quality as the key view and the 

non-key views are encoded by inter-view prediction, which is called asymmetric view coding 

[27]. When viewing distorted stereo images, HVS may choose one of two views as a dominant 

view. Experiments show that images with high spatial frequencies are more dominant than the 

images with very low spatial frequencies [28], caused by the HVS spatial frequency sensitivity. 

That is, binocular perception of a stereo image pair is dominated by the high quality 

component. The level of dominance of the stereo image pair can be measured to design an 

objective stereo quality metric and data compression codec [29]. 

HVS sensitivity is also useful to assess stereo images. Gorley [30] developed an HVS-based 

metric that uses Peli‟s Local Band-Limited Contrast (BLC) algorithm. Local band-limited 

contrast of images is defined as a contrast value that is assigned to every pixel in the image as 

a function of the spatial frequency band. For each frequency band, the contrast is defined as the 

ratio of the bandpass-filtered image to the lowpass-filtered image to an octave below the same 

frequency [31]. Improved version for stereo images is called SBLC (Stereo Band-Limited 

Contrast), which is calculated from the mean of the ratio of stereo matched regions in both the 

left and the right views to the mean luminance of the whole image for every matched point. 

Goley‟s work is based on matching the regions of high spatial frequency between the left and 

the right views of the stereo pair and accounting for HVS sensitivity to contrast and luminance 

changes in regions of high spatial frequency. Matching algorithm uses SIFT (scale invariant 

features) [32] to extract local features (e.g., edges, corners) and RANSAC (RANdom SAmple 

Consensus) [33] algorithm to match the regions. An extensive survey of modeling the 

stereoscopic HVS is reported in [34]. 

In [35], a stereoscopic visual attention model is devised by integrating depth information 

with other low-level features, including motion, intensity, color and orientation contrast. Itti‟s 
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bottom-up attention model [36] is used to implement the spatial attention model. Local spatial 

discontinuities are detected by seven multi-scale low-level feature maps using simulated 

center-surround neurons. The seven neuronal features are sensitive to opponent color contrast, 

intensity contrast and four orientations (0
o
, 45

o
, 90

o
, and 135

o
). Finally, depth map, static 

saliency and motion saliency are integrated into a unique saliency map based on Treisman‟s 

feature integration theory [37]. 

A number of research investigations have been conducted in this arena to detect the most 

essential parts in images which are original or distorted in 2-D or 3-D spaces. The HVS is 

considered as the final decision making factor. However, most of the reported approaches 

utilize one or two aspects of three possible techniques (the HVS-based IQA (image quality 

assessment), attention modeling, and disparity in 3-D images), in spite of the fact that 

perceived stereo picture quality is most dependent up on their combined responses. In this 

paper, we consider different roles of the image assessment factors, as compared in Table 1 in 

terms of the HVS-based IQA and attention-based modeling. Hence, we focus our attention on 

devising an integrated model for stereo color image quality assessment. 

 
Table 1. Comparison of HVS-based IQA with attention-based modeling. 

 HVS-based IQA Attention Modeling 

Processing images Reference image & 

Distorted image 

Reference image 

Detection target Unwanted components Interested components 

Processing direction Bottom-up Bottom-up & 

Top-down 

Assessment level & tool Low level contrast & masking Low to high level contrast 

& masking 

 

The remainder of the paper is organized as follows. Stereo attention predictor (SAP) 

predicts more visually attended regions based on rarity information described in Section 2. 

The concept of depth variation (DV) due to distortions in stereo images is also introduced, 

since it has more significance than depth itself. Stereo distortion predictor (SDP) is designed in 

Section 3 by integrating all three parameters. The resultant visibility map for stereo images is 

presented in Section 4 using test images. Section 5 draws major concluding remarks. 

2. Stereo attention predictor 

The human visual system refers to biological vision system that consists of several pathways 

from low level image input through the eye to high level information analysis and 

understanding in the brain. Visual attention is considered as one the most important tasks of 

the HVS, which is to extract interesting features from the surrounding images. The features are 

driven either by specific objects or by regional textures by means of parallel or serial 

processing. A model is required to approximate and to mimic some of these HVS processes. 

According to studies on afferent superior colliculus (SC) pathways in the brain, the direct 

path from the retina to V1 cortex is responsible for spatial and temporal processing and the 

indirect pathway via the retina – SC – V1 cell is mainly responsible for spatial and motion 

direction (orientation) and color processing [38]. Since the spatial processing mainly deals 

with luminance and frequency contrasts, it is possible to model them separately from 

orientation and color processing. 
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2.1 Attention modeling based on entropy and inverse contrast 

It is believed that visual attention is not driven by a specific feature which has dedicated 

low-level properties that can be treated by the HVS-based assessment. Visual attraction can be 

induced by either heterogeneous or homogeneous, dark or bright, symmetric or asymmetric 

objects [39], that is determined by higher level processing than the existing HVS-based system. 

Assume that image information which is rare in the image will be more attractive. Thus, visual 

attention may be ascertained by modeling and quantifying the rarity of image information, 

called entropy [40]. 

It is well-known that self-information is a function of probability of a symbol. Larger 

probability gives lower self-information by taking logarithm as: 
 

( ) log( ( ))i iI m p m                                                        (1) 

 

where ( )ip m  denotes the probability of a message, , 0im i G  . In image processing, the 

probability density function can be estimated by the histogram that shows distribution of 

probabilities of all image levels. 

A pixel is conspicuous, if its gray level is significantly different from the neighboring pixel 

value. The larger the difference between two levels, the higher the saliency which it represents. 

Thus, the saliency value of a level intensity , 0kI k G   can be calculated from a contrast 

map that is constructed prior to the saliency map computation [41]. The maximum intensity G  

is chosen as 255 in this work. For an image of size N M , the global contrast value of kI  is 

defined as  

 

1 1

( , )1
( )

( , )

N M
k

k

n m

I I m n
C I

N M I m n 





                                         (2) 

 

where ( , )I m n  denotes the intensity value at pixel location (m,n) in an image in the range 

[0, ]G . While the global contrast dominates over the whole image, the inverse contrast is 

defined as the reciprocal of ( )kC I , 

 

( ) 1/ ( ).I k kC I C I                                                       (3) 

 

The histogram of a digital image with 1G   total possible intensity levels is defined as the 

discrete function 

 

( )k kH I n                                                             (4) 

 

where kn  is the number of pixels in the image whose intensity level is kI . The histogram 

affecting the attention probability is multiplied by the inverse contrast, resulting in the 

combined probability of the message as by 

 

( ( , )) ( ( , )) ( ( , ))Ip I m n H I m n C I m n                                           (5) 
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where ( ( , ))H I m n  and ( ( , ))IC I m n  denote the histogram and the inverse contrast of intensity 

level at the pixel location (m,n), respectively. Then, the visual attention is obtained by 

logarithmic operation as 

 

 ( , ) log ( ( , )) .A m n p I m n                                                    (6) 

 

If a message is very different from all the others, ( ( , ))IC I m n  will be low so that the 

occurrence ( ( , ))p I m n  will be lower and the message attention will be higher. Thus, instead of 

computing the saliency values of all the image pixels, only the saliency values of intensity 

levels are necessary for the generation of the final saliency map. One example of the 

pixel-level spatial saliency computation is shown in Fig. 1.  

 

(a)                                                                  (b)
 

Fig. 1. Relative value of visual attention for Y component of „caps.bmp‟ image (a), compared with the 

image histogram and the global inverse contrast. 

 

Fig. 1 (a) and (b) show, respectively, the luminance component of the input image and the 

resulting spatial saliency values, compared with image histogram and global inverse contrast. 

Note that scales for three plots are adjusted to represent them on a graph. The lowest saliency 

is found in the range of frequent occurrences and high global inverse contrast. The saliency 

values are close to what human expects, since higher occurrence indicates redundant 

information in the image, and therefore, relatively unattractive (unattended). 

The output saliency map shows some important objects obtained by relatively simple 

algorithm. However, there may be too many salient objects in the complex images since the 

map is based on histogram method. It does not distinguish semantic meaning of the pixel, size 

or shape of objects, and texture information. In spite of these limitations, it is still useful to 

detect the most salient pixels, which correspond to pixels of visual attention. 

3. Stereo distortion predictor 

A depth assisted attention model is proposed in this section for quality assessment of 

stereoscopic images. Fig. 2 presents the architecture of the proposed model including a depth 

assisted attention model which will be used as a weighting factor for the quality assessment 

tool to derive the final SDP (Stereo Distortion Predictor) output in the form of a map or a 
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single number. More detailed operations and notations in the visual attention and depth 

assisted stereo image quality assessment model (VAD-SIQAM) are depicted in Figs. 3 and 4.  

 

Stereoscopic 

Images

Distortion Map Attention Map Depth Map 

Dynamic Fusion

SDP index

Visual Weighting

 
Fig. 2. Flow diagram of the proposed visual attention and depth assisted stereo image quality 

assessment model (VAD-SIQAM). 
 

Left

Original

Images

Distorted

Images

Right

Left Right

Depth_org

Depth_dst

CVDP_L CVDP_R

Attention_L Attention_R

Fusion 1

Fusion 2

- Depth

Variation

 

Fig. 3. Detailed operations and notations in the visual attention and depth assisted stereo image 

assessment model. 

 

For distortion map, the color VDP (CVDP) metric is used which extends Daly‟s model [42] 

for the stereoscopic inputs. Daly‟s system consists of four main components including 

luminance nonlinearity, CSF processing, directional processing and masking by cortex 

filtering to deal with luminance component only. All algorithms are organized to match human 

sensitivity to detect distinguished distortions in an image. However, it only deals with 

luminance image. Thus, an extended system to color image assessment is proposed in this 
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work. First, RGB components are converted to the opponent color space [43]. Each 

component is processed by relevant contrast functions for luminance, color, and orientation. 

Orientational masking is applied in the omnidirectional cortex domain. The system yields 

detection capability to chromatic distortion, resulting in the visible distortion probability, 

( , )vdpp m n , at each pixel location. This is corresponding to low-level processing in terms of 

distortion sensitivity in the visual system which has multi-level hierarchy to derive a final 

decision, while the attention modeling is with regard to low-level processing in terms of 

interest sensitivity. 

For attention map, an attention model is motivated by Itti model [36][44]. The purpose of 

visual attention is to obtain the most interesting objects of the moment as viewed by human 

eye. It is not always object-based as it has been commonly done in the IQA applications. Some 

regions are most attractive depending on image properties. Itti‟s model is designed to detect 

most salient spot or object. Conspicuity maps for intensity, color, and orientation are 

separately generated by considering entropy and inverse contrast features. Final saliency map 

is obtained by combining the three conspicuity maps. However, as the complexity of an image 

increases, it becomes less meaningful, since the saliency map is used to highlight mainly some 

hot spots which stand out attracting visual attention.  

It is necessary to equalize the attention values for the purpose of indicating the most 

attentive region throughout the image as the maximum level 1 and the least attentive region as 

the minimum level 0, meaning the probability of attention at the pixel location, defined by 

 

( , ) min( )
( , )

max( ) min( )
a

A m n A
p m n

A A





                                                  (7) 

where A denotes the set of attention in an image. 

For depth map, it can be generated from the disparities between corresponding points in two 

images. The Zitnick-Kanade algorithm [45] is used and its results are converted to probability, 

( , )dp m n , in the same vein as Eq. (7). Depth maps are derived from the original data set and 

the distorted images. However, the ground-truth depth map is used for final evaluation 

purpose. 

Dynamic fusion stage is used to integrate the obtained pixel-wise image saliency and depth 

weighting factor, mnw , as defined by 

 

 ( , ) ( , )mn a a d dw k p m n k p m n                                                  (8) 

 

where ak  and dk  are constant values, empirically chosen as 1.2 and 0.8, respectively, by 

taking into account visual importance. ( , )ap m n  denotes the attention probability (AP) and 

( , )dp m n  is defined as the depth variation probability (DVP) between original and distorted 

images (Fig. 4). Assuming that the larger the original depth and the differential depth, the 

more influence there is on visual perception, the DVP is defined as 

 

 ,

, ,

( , ) ( , ) 1 ( , )

( , ) | ( , ) ( , ) |,

d d org diff

diff d org d dst

p m n p m n p m n

p m n p m n p m n

  

 
                                         (9) 
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where , ( , )d orgp m n
 
and , ( , )d dstp m n

 
denote depth probabilities in the original and the distorted 

image pairs, respectively. 

Finally, the SDP index, mnQ , is obtained by visual weighting to the visible distortion 

probability in Eq. (8) as 

 

( , )mn mn vdpQ w p m n                                                    (10) 

 

where ( , )vdpp m n  denotes the visible distortion probability at pixel (m,n), calculated by the 

CVDP distortion map. Note that all these operations are performed for both left and right 

images separately and the final SDP map is given to both left and right image pair. 

 

Start

Distortion(Ql, Qr), 

Attention(Al, Ar), 

Depth(DO, DD)

(Ql >= Qr) ? Yes No

Q=Ql*(ka*Al + kd*D) Q = Qr*(ka*Ar + kd*D)

Al, Ar,

D=DO*(1+Ddiff)

Ddiff =|DO-DD|,

End

SDP mapping, or

Quality pooling

 
Fig. 4. Float chart of proposed stereoscopic attention based model. (DO: Original Disparity, DD: 

Distorted Disparity, Ql: Quality for left image, Qr: Quality for right image, Al: Attention for left image, 

Ar: Attention for right image, ka and kd: weighting factors for attention and depth, respectively.) 

 

Despite the pixel-wise SDP mapping, single number quality metrics are often useful for 

quantitative evaluation and comparison. The Minkowski sum [46] of the final SDP indices in 

the quality pooling stage (Fig. 5) is calculated as defined by 

 
1/

0 0

M N

mn

m n

Q Q





 

 
  
 
                                                        (11) 
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where the parameter 2.4  . The SDP mapping provides an indication of the location of 

visible distortions, while the single number provides a simple way to represent image quality. 

 

 

Fig.5. Stereo image and disparity map: (Top-left) Left-view image “tsukuba_r.bmp”, (courtesy of U. of 

Tsukuba), (Top-right) Right-view image, (Bottom-left) Disparity map obtained by Zitnick-Kanade 

algorithm, and (Bottom-right) Ground-truth depth map used to evaluate the results. 

4. Simulation and Results 

A stereo image pair, “tsukuba.bmp”, that consists of foreground objects (head sculpture and 

stand light) has been tested. First, disparity values are measured at each pixel as shown in Fig. 

5. The nearest object in Fig. 5 (top-left and -right) is the stand light whose depth is represented 

by white pixels in the disparity map, while the background (book-shelf) is drawn by dark 

pixels, meaning that they are far away from the foreground. 

Stereo images are compressed by JPEG coding as shown in Fig. 6, resulting in blocking and 

ringing artifacts as well as various other well-known picture coding distortions. Quantization 

level zero (Q0) of twelve levels provides the worst quality in the Photoshop CS4 toolkit [47]. 

Both left and right images are encoded with Q0 and Q2, respectively, resulting in slightly 

different PSNR performance due to small amount of disparity and independent encoding for 

two channels. The disparity maps in Fig. 7 are also affected by compression, although some 

results suggested that the JPEG encoding had no effect on perceived depth [28]. 

Color images captured by a camera or other input devices are normally represented in the 

RGB color space. It is first necessary to convert RGB images to other color formats, e.g., the 

opponent color space [48], since the opponent color theory suggests that there are three visual 

pathways in the human color vision system. One pathway is sensitive mainly to light-dark 

(W-Bk) variations. The other two pathways are sensitive to red-green (R-G) and blue-yellow 

(B-Ye) variation. We decided to use the YCbCr color model in this work, which is a color 
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space in digital TV broadcasting [49]. The Y contains the luminance information, while Cb 

and Cr contain chromatic difference information. 

 

 
Fig. 6. Stereo images distorted by JPEG codec: (Top-left) Left-view image (PSNR 29.91 dB, Ql2), 

(Top-right) Right-view image (PSNR 30.01 dB, Qr2), (Bottom-left) Left-view image (PSNR 31.92 dB, 

Ql0), and (Bottom-right) Right-view image (PSNR 32.08 dB, Qr0). Blocking artifacts are detectable. 

 

 

Fig. 7. Disparity maps of stereo images distorted by JPEG codec: (Left) Q0, (Right) Q2. 

 

Fig. 8 shows attention maps for color difference channels, obtained by using algorithms 

described in Section 2. The entropy and inverse contrast-based attention model is applied to 

three color difference signals. The results show higher attention values for the sculpture region 

in luminance component and for the stand light region in color difference components. The 

attention maps for color difference components are combined to obtain an attention map for 

color component, which will be used as an input to overall attention model. The orientation 

map is the third component to be combined to obtain an overall attention map for left and right 

channels, as shown in Fig. 9. 

The CVDP outputs (Fig. 10) show all distortions in terms of visual sensitivity, since the 

visual attention has not been taken into account. More distorted images (top-row, Q0) result in 
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higher number of white pixels where distortions are visible. However, objects with larger 

depths (e.g., sculpture region) are evaluated with less visible distortions, which are not normal 

in terms of visual attention. Such results are caused by the fact that larger object (lower spatial 

frequency) is less perceptible by spatial frequency sensitivity of human eye. This is a reason 

that we have to integrate visual attention model. 

The proposed model gives more emphasis on visually more attended regions or objects (Fig. 

11) by considering attention and disparity information. As an evaluation of performance of the 

VAD-SIQAM, scatter plots are drawn, showing the perceived distortion level versus the 

ground-truth attention in Fig. 12(a)-(b) and versus depth values in Fig. 12(c)-(d). The CVDP 

detects the visible distortions in the left image (Fig. 12(a)) and the right image (Fig. 12(b)), 

respectively. The VAD-SIQAM predicts the significant distortions in the left and right images 

by combining attention and depth information, resulting in more correlated performance in 

terms of visual attention, which is derived based on assumption that the sculpture and the stand 

light are two most attentive objects, called ground-truth attention as shown in Fig. 9. In the 

same reason, there is no absolute criteria to detect depth information unless the actual distance 

is measured, called ground-truth depth as shown in Fig. 5. Objects with higher depth are used 

to have higher attention. However they are not always in this case, showing that the sculpture 

object is the most attentive. 

The linear correlation coefficients are widely used to compare a pair of data set and to 

evaluate the performance of quality model. In general, Pearson‟s correlation coefficient (CC) 

and Spearman rank-order correlation coefficient (ROCC) are used to measure the prediction 

performance [50]. First, the CC pr  is defined as: 

 

2 2

( )( )

( ) ( )

i i

i
p

i i

i i

x x y y

r
x x y y

 


 



 
                                               (12) 

 

where pr  is the Pearson‟s correlation coefficient for pairs of ( , )i ix y , 0,..., 1i N  . x  and 

y  denote means of data set ix ‟s and 
iy ‟s, respectively. The value of pr  are in the range of -1 

and 1. It takes a value of 1, meaning “complete positive correlation”, while -1 meaning 

“complete negative correlation”. If it is near zero, the variables x and y are almost uncorrelated. 

The ROCC sr  is similarly defined as: 
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i i
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r
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where iR  is the rank of ix  among the other x‟s and iS  is the rank of iy  among the other y‟s.  
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Fig. 8. Attention maps for left and right image by entropy and inverse contrast model: (Top-left) 

Luminance (Opponent color W-Bk) component of left reference image, (Top-middle) Cb (B-Ye) 

chromatic component of left reference image, (Top-right) Cr (R-G) chromatic component of left 

reference image, (Bottom-left) Luminance component of right reference image, (Bottom-middle) Cb 

chromatic component of right reference image, (Bottom-right) Cr chromatic component of right 

reference image. 

 

 
Fig. 9. Attention maps for original “tsukuba.bmp”: (Top-row) Derived left and right attention that 

intensity, color, and orientation features are combined by Itti‟s winner-take-all algorithm, (Bottom-row) 

Left and right ground-truth attention used to evaluate the results. 
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Fig. 10. Color VDP result images: (Top-left) Left image (Q0), (Top-right) Right image (Q0), 

(Bottom-left) Left image (Q2), (Bottom-right) Right image (Q2). White level represents the most visible 

distortion in the pixel basis, while black level represents no discrimination of distortion. 

 

 
Fig. 11. The final perceptual distortion map of the proposed VAD-SIQAM for stereo data set at (Left) 

Q0 and (Right) Q2 quantization level. 

 

We consider the CC and ROCC as very important factors in comparing the ground-truth 

attention and depth with the proposed VAD-SIQAM and the CVDP model. Notice that the 

prediction monotonicity of the performance is given by the ROCC, while the prediction 

accuracy is measured by the CC. The negative correlation of the CVDP turns out to be positive 

correlation by means of attention and depth information in our model. Correlation coefficients 

are up to 0.668 on average versus attention and up to 0.949 versus depth as shown in Table 2. 

Although the final results are obtained by combining the visible distortions in the left and right 

images, we show the single-channel correlation properties for quantization level zero (Q0) and 

level two (Q2) images. 
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(a)                              (b)

(c)                              (d)
 

Fig. 12. Scatter plots of perceived distortion versus ground-truth visual attention and depth. (a) and (c) 

for left image; (b) and (d) for right image. The VAD-SIQAM shows positive correlation, while the 

CVDP shows negative correlation. 

 

Table 2. Comparison of correlation coefficients (CC) versus attention and depth for compressed stereo 

images. 

 
Pearson CC Spearman CC 

CVDP VAD-SIQAM CVDP VAD-SIQAM 

vs. Attention Map 

Q0 
L -0.586 0.686 -0.587 0.706 

R -0.616 0.683 -0.632 0.690 

Q2 
L -0.435 0.659 -0.448 0.673 

R -0.628 0.532 -0.617 0.603 

Average -0.566 0.640 -0.571 0.668 

vs. Depth Map 

Q0 
L -0.642 0.967 -0.598 0.970 

R -0.608 0.967 -0.667 0.970 

Q2 
L -0.641 0.931 -0.653 0.901 

R -0.539 0.931 -0.695 0.901 

Average -0.608 0.949 -0.653 0.936 
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5. Conclusion 

A visual attention and depth assisted stereo image quality assessment model, i.e., the 

VAD-SIQAM, is introduced based on color VDP quality map, visual attention map, and 

differential disparity map. First, disparity for each pixel in stereo image is measured using 

Zitnick-Kanade algorithm to decide visual attention map in 3-D images. This approach is 

useful because regions or objects of interest are dependent on their depth, i.e., attention to an 

object usually decreases as its depth increases. When the disparity map is used to assess 

distorted stereo images, the disparity information is also subject to distortion and the depth 

variation is more important than the original depth information. Thus, a stereo attention 

predictor combined with the amount of depth variation is devised based on the principle that 

more distorted depth information results in higher attention values.  

Second, visual attention is measured using the low-level image features such as intensity, 

color, and orientation. Saliency value is closely related to the rarity information, since it 

affects the final point(s) of attention. An entropy and inverse contrast based saliency 

measurement model is formulated for intensity and color components which are further 

combined with orientation component.  

Third, an attention probability map is generated which is comparable to the distortion 

probability of the CVDP. The CVDP provides a quality map, indicating which part of an 

image is more sensitive to human eye. Motivation of using stereo attention to the CVDP is that 

distortions in more attended regions are easily detected. The attention probability is weighted 

by the HVS-based distortion probability to derive a quality index of stereo images. The results 

show that the VAD-SIQAM is able to detect visually significant distortions which correspond 

to visually more attended regions from the rest of distortions based on human visual properties. 

The performance of the VAD-SIQAM is evaluated in terms of the Pearson linear correlation 

coefficient and the Spearman rank order correlation coefficient, demonstrating significant 

improvement in visual attention and depth measurements compared with the CVDP. 
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