• Title/Summary/Keyword: Interdigitated Structure

Search Result 22, Processing Time 0.026 seconds

Optimum Design of the Interdigitated CB Structure

  • qiang, Yang-Hong;bi, Chen-Xing
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.3
    • /
    • pp.233-236
    • /
    • 2002
  • Some measures are provided for the optimum design of specific on-resistance $R_{on}$ and breakdown-voltage $V_B$ of interdigitated CB (Composite Buffer) MOSFET, including introducing opposite type impurity into the P region near the $N_+$contact, separating P region from N region with an oxide film, and a groove in the N region near the $P_+$ contact. The new relationship between the $R_{on}$ and $V_B$, which proved by numerical device simulation, are more exact and minute than the qualitative results before.

Effects of Lipid Composition on the Properties of Phospholipid Liposomal Membranes (리포솜 지질막의 성질에 미치는 지질 조성의 영향)

  • Kim, Min;Han, Suk-Kyu;Kim, Chong-Kook
    • YAKHAK HOEJI
    • /
    • v.38 no.2
    • /
    • pp.131-139
    • /
    • 1994
  • Calcein-encapsulated small unilamellar vesicles of various lipid composition were prepared using the sonication technique, and their stabilities at $20^{\circ}C$ were examined by measuring calcein leakage from the liposomes. The fluidity of these liposomal bilayers was also investigated by measuring the fluorescence polarization of DPH labelled into the liposomes. The results showed that liposomes made of PC mixtures with different acyl chain length were very stable, which may be due to the formation of interdigitated bilayer structure. The addition of cholesterol further stabilized these PC liposomes. However, addition of cholesterol reduced the encapsulation efficiences of liposomes. The fluidity of the liposomes was significantly decreased by cholesterol in the liquid crystalline state, but not changed in the gel state. These results suggest that the enhanced stability of PC mixture liposomes may be ascribed to the formation of stable interdigitated bilayer structure. In membrane-mimetic and drug-delivery studies, vesicles made of mixtures of various phospholipids are recommended instead of addition of cholesterol to the phospholipid.

  • PDF

Circuit Modeling of Interdigitated Capacitors Fabricated by High-K LTCC Sheets

  • Kim, Kil-Han;Ahn, Min-Su;Kang, Jung-Han;Yun, Il-Gu
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.182-190
    • /
    • 2006
  • The circuit modeling of interdigitated capacitors fabricated by high-k low-temperature co-fired ceramic (LTCC) sheets was investigated. The s-parameters of each test structure were measured from 50 MHz to 10 GHz, and the modeling was performed using these measured sparameters up to the first resonant frequency. Each test structure was divided into appropriate building blocks. The equivalent circuit of each building block was composed based on the partial element equivalent circuit (PEEC) method. Modeling was executed to optimize the parameters in the equivalent circuit of each building block. The validity of the extracted parameters was verified by the predictive modeling for the test structures with different geometry. After that, Monte Carlo analysis and sensitivity analysis were performed based on the extracted parameters. The modeling methodology can allow a device designer to improve the yield and to save time and cost for the design and manufacturing of devices.

  • PDF

Active Vibration Control of Smart Hull Structure Using MFC Actuators (MFC 작동기를 이용한 스마트 Hull 구조물의 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1408-1415
    • /
    • 2005
  • Active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is performed. Finite element modeling is used to obtain governing equations of motion and boundary effects of end-capped smart hull structure. Equivalent interdigitated electrode model is developed to obtain piezoelectric couplings of MFC actuator. Modal analysis is conducted to investigate the dynamic characteristics of the hull structure, and compared to the results of experimental investigation. MFC actuators are attached where the maximum control performance can be obtained. Active controller based on Linear Quadratic Gaussian (LQG) theory is designed to suppress vibration of smart hull structure. It is observed that closed loop damping can be improved with suitable weighting factors in the developed LQG controller and structural vibration is controlled effectively.

Active Vibration Control of Smart Hull Structure Using MFC Actuators (MFC 작동기를 이용한 스마트 Hull 구조물의 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.217-222
    • /
    • 2005
  • Active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is performed. Finite element modeling is used to obtain governing equations of motion and boundary effects of end-capped smart hull structure. Equivalent interdigitated electrode model is developed to obtain piezoelectric couplings of MFC actuator. Modal analysis is conducted to investigate the dynamic characteristics of the hull structure, and compared to the results of experimental investigation. MFC actuators are attached where the maximum control performance can be obtained. Active controller based on Linear Quadratic Gaussian (LQG) theory is designed to suppress vibration of smart hull structure. It is observed that closed loop damping can be improved with suitable weighting factors in the developed LQG controller and structural vibration is controlled effectively.

  • PDF

The Interdigitated-Type Capacitive Humidity Sensor Using the Thermoset Polyimide (열경화성 폴리이미드를 이용한 빗살전극형 정전용량형 습도센서)

  • Hong, Soung-Wook;Kim, Young-Min;Yoon, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.604-609
    • /
    • 2019
  • In this study, we fabricated a capacitive humidity sensor with interdigitated (IDT) electrodes using a thermosetting polyimide as a humidifying material. First, the number of electrodes, thickness, and spacing of the polyimide film were optimized, and a mask was designed and fabricated. The sensor was fabricated on a silicon substrate using semiconductor processing equipment. The area of the sensor was $1.56{\times}1.66mm^2$, and the width of the electrode and the gap between the electrodes were each $3{\mu}m$. The number of electrodes was 166, and the length of an electrode was 1.294 mm for the sensitivity of the sensor. The sensor was then packaged on a PCB for measurement. The sensor was inserted into a chamber environment with a temperature of $25^{\circ}C$ and connected to an LCR meter to measure the change in capacitance at relative humidity (RH) of 20% to 90%, 1 V, and 20 kHz. The results showed a sensitivity of 26fF/%RH, linearity of < ${\pm}2%RH$, and hysteresis of < ${\pm}2.5%RH$.

Effect of Design Parameters on the Efficiency of the Solar Cells Fabricated Using SOI Structure (SOI 구조 이용한 결정질 규소 태양전지의 최적설계)

  • Lee, Gang-Min;Kim, Yeong-Gwan
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.890-895
    • /
    • 1999
  • The recent important issue in solar cell fabrication is to adopt thin film silicon solar cells on cheap substrates. However, thin cells demand new grid design concept that all the contacts(to the emitter and base) be located on the front surface. Hence, the aim of the investigation presented in this paper was to determine the potential and the basic limitation of the design. With this concept, an interdigitated front grid structure was realized and cells were fabricated through a set of photolithography processes. Confirmed efficiencies of up to 11.5% were achieved on bonded SOI wafers with a cell thickness of 50$\mu\textrm{m}$ in the case of finger spacing more than $\mu\textrm{m}$ and a base width of 35$\mu\textrm{m}$. It was also shown from the results that the design rules for optimizing the base fraction and reducing the shadowing fraction are noted as an important technique to realize high-efficiency thin silicon solar cells.

  • PDF

Humidity-Sensing Properties of RF Sputtered Vanadium Oxide Thin Films (RF 스퍼터된 바나듐 산화막의 습도 감지 특성)

  • Choi, Bok-Gil;Choi, Chang-Kyu;Kim, Sung-Jin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.10
    • /
    • pp.475-480
    • /
    • 2006
  • Vanadium oxide thin films (VOx) have been deposited by RF magnetron sputtering from $V_2O_5$ target under different oxygen partial pressure ratios(0%, 10%) and substrate temperatures$(27^{\circ}C,\;400^{\circ}C)$. Crystallographic structure and morphology of the films are studied by XRD and SEM. Humidity-sensing properties of resistive sensors having interdigitated electrode structure are characterized through electrical conduction measurements. The films deposited at room temperature are amorphous whereas the ones deposited above foot are polycrystalline. The sensors show good response to humidity over 20%RH to 80%RH. Vanadium oxide thin films deposited with $0%O_2$ partial pressure at $400^{\circ}C$ exhibit greater sensitivity to humidity change than others.

Detection of edge delamination in surface adhered active fiber composites

  • Wang, Dwo-Wen;Yin, Ching-Chung
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.633-644
    • /
    • 2009
  • A simple method has been developed to detect the bonding condition of active fiber composites (AFC) adhered to the surface of a host structure. Large deformation actuating capability is one of important features of AFC. Edge delamination in adhesive layer due to large interfacial shear stress at the free edge is typically resulted from axial strain mismatch between bonded materials. AFC patch possesses very good flexibility and toughness. When an AFC patch is partially delaminated from host structure, there remains sensing capability in the debonded part. The debonding size can be determined through axial resonance measured by the interdigitated electrodes symmetrically aligned on opposite surfaces of the patch. The electrical impedance and modal response of the AFC patch in part adhered to an aluminum plate were investigated in a broad frequency range. Debonding ratio of the AFC patch is in inverse proportion to the resonant frequency of the fundamental mode. Feasibility of in-situ detecting the progressive delamination between AFC patch and host plate is demonstrated.

An Integrated Sensor for Pressure, Temperature, and Relative Humidity Based on MEMS Technology

  • Won Jong-Hwa;Choa Sung-Hoon;Yulong Zhao
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.505-512
    • /
    • 2006
  • This paper presents an integrated multifunctional sensor based on MEMS technology, which can be used or embedded in mobile devices for environmental monitoring. An absolute pressure sensor, a temperature sensor and a humidity sensor are integrated in one silicon chip of which the size is $5mm\times5mm$. The pressure sensor uses a bulk-micromachined diaphragm structure with the piezoresistors. For temperature sensing, a silicon temperature sensor based on the spreading-resistance principle is designed and fabricated. The humidity sensor is a capacitive humidity sensor which has the polyimide film and interdigitated capacitance electrodes. The different piezoresistive orientation is used for the pressure and temperature sensor to avoid the interference between sensors. Each sensor shows good sensor characteristics except for the humidity sensor. However, the linearity and hysteresis of the humidity sensor can be improved by selecting the proper polymer materials and structures.