• 제목/요약/키워드: Interaction Modeling

검색결과 1,087건 처리시간 0.023초

부모의 온정적 양육행동과 또래 상호작용이 유아의 외현화 문제행동에 미치는 영향 (The Effects of Parenting Behavior and Peer Interaction on Preschoolers' Externalizing Problem Behaviors)

  • 우수정
    • 한국보육지원학회지
    • /
    • 제12권2호
    • /
    • pp.41-55
    • /
    • 2016
  • The purpose of this study was to examine the effects of parenting behavior and peer interaction on externalizing problem behaviors of preschoolers. The data of 953 49~55 month old preschoolers and their parents were extracted from the Korean Children Panel Survey of Child-Care Policy Research Institute(2012). This study was conducted with Structural Equation Modeling(SEM). The results of this study were as follows. First, parenting behavior had a direct influence on externalizing problem behaviors of preschoolers. Second, parenting behavior had a direct influence on preschoolers' peer interaction. Third, preschoolers' peer interaction had a direct influence on externalizing problem behaviors of preschoolers. Fourth, preschoolers' peer interaction had mediating effects on the relationship between parenting behavior and externalizing problem behaviors of preschoolers.

The Impact of Servicescape on Customer Experience Quality through Employee-to-customer Interaction Quality and Peer-to-peer Interaction Quality in Hedonic Service Settings

  • Choi, Beomjoon;Kim, Hyun Sik
    • Asia Marketing Journal
    • /
    • 제17권2호
    • /
    • pp.73-96
    • /
    • 2015
  • This paper investigates how servicescape perception influences customer experience quality in hedonic service settings. In addition to the direct effect of servicescape quality on customer experience quality, the indirect effects of servicescape quality on customer experience quality via employee-to-customer interaction quality and peer-to-peer interaction quality are also investigated. We collected data through a self-administered survey. The proposed relationships were tested using structural equation modeling. The results show that servicescape quality influences customer experience quality both directly and indirectly through employee-to-customer interaction quality and peer-to-peer interaction quality, and customer experience quality influences customer loyalty. Additionally, we find that the indirect path via peer-to-peer interaction quality is significant only in a low-satisfaction customer group. The indirect effect of servicescape quality perception through peer-to-peer interaction quality is significant only in low-satisfaction customer groups. Therefore, if evaluations for this indirect effect fall below an acceptable level, it should be addressed first before improving on other attributes. However, after this point, further improvements offer few if any gains; therefore, service firms should allocate their resources to quality improvements to other factors. This study is the first to investigate the indirect effects of servicescape quality on customer experience quality via peer-to-peer interaction quality in hedonic service settings. Additionally, this study demonstrates that the significance of this indirect effect applies only to a low-satisfaction customer group.

Interaction analysis of three storeyed building frame supported on pile foundation

  • Rasal, S.A.;Chore, H.S.;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • 제7권4호
    • /
    • pp.455-483
    • /
    • 2018
  • The study deals with physical modeling of a typical three storeyed building frame supported by a pile group of four piles ($2{\times}2$) embedded in cohesive soil mass using three dimensional finite element analysis. For the purpose of modeling, the elements such as beams, slabs and columns, of the superstructure frame; and that of the pile foundation such as pile and pile cap are descretized using twenty noded isoparametric continuum elements. The interface between the pile and the soil is idealized using sixteen node isoparametric surface element. The soil elements are modeled using eight nodes, nine nodes and twelve node continuum elements. The present study considers the linear elastic behaviour of the elements of superstructure and substructure (i.e., foundation). The soil is assumed to behave non-linear. The parametric study is carried out for studying the effect of soil- structure interaction on response of the frame on the premise of sub-structure approach. The frame is analyzed initially without considering the effect of the foundation (non-interaction analysis) and then, the pile foundation is evaluated independently to obtain the equivalent stiffness; and these values are used in the interaction analysis. The spacing between the piles in a group is varied to evaluate its effect on the interactive behaviour of frame in the context of two embedment depth ratios. The response of the frame included the horizontal displacement at the level of each storey, shear force in beams, axial force in columns along with the bending moments in beams and columns. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and in the context of non-linear behaviour of soil.

Numerical investigations of structure-soil-structure interaction on footing forces due to adjacent building

  • Shrish Chandrawanshi;Vivek Garg
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.477-487
    • /
    • 2024
  • The interaction between multiple structures through the supporting soil media, known as structure-soil-structure interaction (SSSI), has become an increasingly important issue due to rapid urbanization. There is a need to investigate the effect of SSSI on the structural response of buildings compared to non-interaction analysis (NIA) and soil-structure interaction (SSI) analysis. In the present study, two identical 4-bay×4-bay, three-story RCC buildings are modeled adjacent to each other with a soil domain beneath it to investigate the effect of SSSI on the forces experienced by footings under gravity and seismic load cases. The ANSYS software is used for modeling various non-interaction and interaction models which work on the principle of FEM. The results indicate that in most of the footings, the SSSI effect causes a significant redistribution of forces compared to SSI and NIA under both gravity and seismic load cases. The maximum interaction effect is observed on the footings that are closer to the adjacent building. The axial force, shear force and bending moment values on these footings show that SSI causes a significant increase in these values compared to non-interaction analysis but the presence of adjacent building relieves these forces significantly.

FIDO 방법론을 이용한 기업 간 연계 프로세스 모델링 (Partnership Enterprise Modeling Using FIDO-Integrated Systems Modeling Technique)

  • 김중인;김철한;이경휘
    • 산업공학
    • /
    • 제15권1호
    • /
    • pp.55-63
    • /
    • 2002
  • This paper utilizes the FIDO methodology (Function, Information, Dynamic, Organization modeling) which is an enterprise modeling tool that can describe inter-organizational interaction (specifically between prime and sub contractors in this experiment). FIDO follows the standard IDEFO rules in order to demonstrate how a cascading information flow can evolve from a customer to a prime to a subcontractor in a concurrent manner, in a supply chain environment. Background on these processes is presented, followed with the newly derived process and methodology. This is presented in a supply chain management context, and results from an actual experiment at Motorola utilizing subcontractors that supply custom machine parts is presented and reviewed.

Effect of temperature gradient on track-bridge interaction

  • Kumar, Rakesh;Upadhyay, Akhil
    • Interaction and multiscale mechanics
    • /
    • 제5권1호
    • /
    • pp.1-12
    • /
    • 2012
  • Considerable longitudinal rail forces and displacements may develop in continuous welded rail (CWR) track on long-span bridges due to temperature variations. The track stability may be disturbed due to excessive relative displacements between the sleepers and ballast bed and the accompanied reduction in frictional resistance. For high-speed tracks, however, solving these problems by installing rail expansion devices in the track is not an attractive solution as these devices may cause a local disturbance of the vertical track stiffness and track geometry which will require intensive maintenance. With reference to temperature, two actions are considered by the bridge loading standards, the uniform variation in the rail and deck temperature and the temperature gradient in deck. Generally, the effect of temperature gradient has been disregarded in the interaction analysis. This paper mainly deals with the effect of temperature gradient on the track-bridge interaction with respect to the support reaction, rail stresses and stability. The study presented in this paper was not mentioned in the related codes so far.

The Spectrally Accurate Method Applied to Wave-Current Interaction as a Freak Wave Generation Mechanism

  • Sung, Hong-Gun;Hong, Key-Yong;Kyoung, Jo-Hyun;Hong, Sa-Young
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.113-120
    • /
    • 2006
  • In this paper, generation mechanisms of ocean freak waves are briefly introduced in the context of wave-current interaction phenomena. As an accurate and efficient numerical tool, the spectral element method is presented with general features and specific treatment for the wave-current interaction problem. The present model of the fluid motion is based on the Navier-Stokes equations incorporating a velocity-pressure formulation. In order to deal with the free surface motion, an Arbitrary Lagrangian-Eulerian (ALE) description is adopted. As an intermediate stage of development, solution procedure and characteristic aspects of the present modeling and numerical method features are addressed in detail, and numerical results for wave-current interaction is left as further study.

  • PDF

말뚝-캡 강성을 고려한 군말뚝기초의 해석 (Analysis of Pile Groups Considering Pile-Cap Interaction)

  • 정상섬;원진오;허정원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.363-370
    • /
    • 2001
  • A computationally efficient algorithm to analyze a group pile behavior is proposed by consideration of both soil-pile and pile-cap interactions. Using toad transfer method the nonlinear characteristics of the soil-pile interaction for a single pile is modeled by piecewise linear soil springs (p-y, t-z, and q-z curves). Beam-column method, one of the most practical approaches, is used for numerical modeling of the soil-pile system. In addition to the group effect resulting from the soil-pile-soil interaction, for a more realistic analysis it is essential to consider the effect of pile-cap interaction including geometric configuration of the piles in a group and conectivity conditions between piles and the cap. This paper mainly focuses on the pile-cap interaction and the development of a rational numerical procedure of its incorporation with the beam-column method.

  • PDF

Numerical modeling of coupled structural and hydraulic interactions in tunnel linings

  • Shin, J.H.
    • Structural Engineering and Mechanics
    • /
    • 제29권1호
    • /
    • pp.1-16
    • /
    • 2008
  • Tunnels are generally constructed below the ground water table, which produces a long-term interaction between the tunnel lining and the surrounding geo-materials. Thus, in conjunction with tunnel design, the presence of water may require a number of considerations such as: leakage and water load. It has been reported that deterioration of a drainage system of tunnels is one of the main factors governing the long-term hydraulic and structural lining-ground interaction. Therefore, the design procedure of an underwater tunnel should address any detrimental effects associated with this interaction. In this paper an attempt to identify the coupled structural and hydraulic interaction between the lining and the ground was made using a numerical method. A main concern was given to local hindrance of flow into tunnels. Six cases of local deterioration of a drainage system were considered to investigate the effects of deterioration on tunnels. It is revealed that hindrance of flow increased pore-water pressure on the deteriorated areas, and caused detrimental effects on the lining structures. The analysis results were compared with those from fully permeable and impermeable linings.

Biochemical characterization of ferredoxin-NADP+ reductase interaction with flavodoxin in Pseudomonas putida

  • Yeom, Jin-Ki;Park, Woo-Jun
    • BMB Reports
    • /
    • 제45권8호
    • /
    • pp.476-481
    • /
    • 2012
  • Flavodoxin (Fld) has been demonstrated to bind to ferredoxin-NADP$^+$ reductase A (FprA) in Pseudomonas putida. Two residues ($Phe^{256}$, $Lys^{259}$) of FprA are likely to be important for interacting with Fld based on homology modeling. Site-directed mutagenesis and pH-dependent enzyme kinetics were performed to further examine the role of these residues. The catalytic efficiencies of FprA-$Ala^{259}$ and FprA-$Asp^{259}$ proteins were two-fold lower than those of the wild-type FprA. Homology modeling also strongly suggested that these two residues are important for electron transfer. Thermodynamic properties such as entropy, enthalpy, and heat capacity changes of FprA-$Ala^{259}$ and FprA-$Asp^{259}$ were examined by isothermal titration calorimetry. We demonstrated, for the first time, that $Phe^{256}$ and $Lys^{259}$ are critical residues for the interaction between FprA and Fld. Van der Waals interactions and hydrogen bonding were also more important than ionic interactions for forming the FprA-Fld complex.