• Title/Summary/Keyword: Interaction Coefficient

Search Result 668, Processing Time 0.025 seconds

A Study on the Unsteady Aerodynamics of Projectiles in Overtaking Blast Flowfields

  • Muthukumaran, C.K.;Rajesh, G.;Lijo, Vincent;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.409-414
    • /
    • 2011
  • A projectile that passes through a shock wave experiences drastic changes in the aerodynamic forces. These sudden changes in the forces are attributed to the wave structures produced by the projectile-shock wave interaction. A computational study using moving grid method is performed to analyze the effect of the projectile-shock wave interaction. Cylindrical and conical projectiles have been employed to study such interactions. This sort of unsteady interaction normally takes place in overtaking blast flow fields. It is found that the overall effect of overtaking a blast wave on the unsteady aerodynamic characteristics is hardly affected by the projectile configurations. However, it is noticed that the projectile configurations do affect the unsteady flow structures and hence the drag coefficient for the conical projectile shows considerable variation from that of the cylindrical projectile. The projectile aerodynamic characteristics, when it interacts with the secondary shock wave, are analyzed. It is also observed that the change in the characteristics of the secondary shock wave during the interaction is different for different projectile configurations.

  • PDF

Practical Numerical Model for Nonlinear Analyses of Wave Propagation and Soil-Structure Interaction in Infinite Poroelastic Media (무한 다공성 매질에서의 비선형 파전파 해석과 지반-구조물 상호작용 해석을 위한 실용적 수치 모형)

  • Lee, Jin Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.379-390
    • /
    • 2018
  • In this study, a numerical approach based on mid-point integrated finite elements and a viscous boundary is proposed for time-domain wave-propagation analyses in infinite poroelastic media. The proposed approach is accurate, efficient, and easy to implement in time-domain analyses. In the approach, an infinite domain is truncated at some distance. The truncated domain is represented by mid-point integrated finite elements with real element-lengths and a viscous boundary is attached to the end of the domain. Given that the dynamic behaviors of the proposed model can be expressed in terms of mass, damping, and stiffness matrices only, it can be implemented easily in the displacement-based finite-element formulation. No convolutional operations are required for time-domain calculations because the coefficient matrices are constant. The proposed numerical approach is applied to typical wave-propagation and soil-structure interaction problems. The model is verified to produce accurate and stable results. It is demonstrated that the numerical approach can be applied successfully to nonlinear soil-structure interaction problems.

Large Eddy Simulation of Shock-Boundary Layer Interaction

  • Teramoto, Susumu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.426-432
    • /
    • 2004
  • Large-Eddy Simulation (LES) is applied for the simulation of compressible flat plate boundary with Reynolds number up to 5 X 10$^{5}$ . Numerical examples include shock/boundary layer interaction and boundary layer transition, aiming future application to the analysis of transonic fan/compressor cascades. The present LES code uses hybrid com-pact/WENO scheme for the spatial discretization and compact diagonalized implicit scheme for the time integration. The present code successfully predicted the bypass transition of subsonic boundary layer. As for supersonic turbulent boundary layer, mean and fluctuation velocity of the attached boundary, as well as the evolution of the friction coefficient and the displacement thickness both upstream and downstream of the separation region are all in good agreement with experiment. The separation point also agreed with the experiment. In the simulation of the shock/laminar boundary layer interaction, the dependence of the transition upon the shock strength is reproduced qualitatively, but the extent of the separation region is overpredicted. These numerical examples show that LES can predict the behavior of boundary layer including transition and shock interaction, which are hardly managed by the conventional Reynolds-averaged Navier-Stokes approach, although there needs to be more effort before achieving quantitative agreement.

  • PDF

Precise prediction of radiation interaction position in plastic rod scintillators using a fast and simple technique: Artificial neural network

  • Peyvandi, R. Gholipour;rad, S.Z. Islami
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1154-1159
    • /
    • 2018
  • Precise prediction of the radiation interaction position in scintillators plays an important role in medical and industrial imaging systems. In this research, the incident position of the gamma rays was predicted precisely in a plastic rod scintillator by using attenuation technique and multilayer perceptron (MLP) neural network, for the first time. Also, this procedure was performed using nonlinear regression (NLR) method. The experimental setup is comprised of a plastic rod scintillator (BC400) coupled with two PMTs at two sides, a $^{60}Co$ gamma source and two counters that record count rates. Using two proposed techniques (ANN and NLR), the radiation interaction position was predicted in a plastic rod scintillator with a mean relative error percentage less than 4.6% and 14.6%, respectively. The mean absolute error was measured less than 2.5 and 5.5. The correlation coefficient was calculated 0.998 and 0.984, respectively. Also, the ANN technique was confirmed by leave-one-out (LOO) method with 1% error. These results presented the superiority of the ANN method in comparison with NLR and the other methods. The technique and set up used are simpler and faster than other the previous position sensitive detectors. Thus, the time, cost and shielding and electronics requirements are minimized and optimized.

The Effects of Young Children's Temperament, Parenting Styles and Teacher-Child Interactions on Peer Interactions (유아의 기질, 부모의 양육방식 및 교사-유아 상호작용이 또래상호작용에 미치는 영향)

  • Lee, Mi Ran
    • Korean Journal of Childcare and Education
    • /
    • v.11 no.5
    • /
    • pp.191-214
    • /
    • 2015
  • The purpose of this study was to investigate variables which have an influence on young children's peer interactions. The data of 966 4-year-old children and their parents and class teachers were extracted from the 5th Panel Study on Korean Children in 2012 by Korea Institute of Child Care and Education. The data were analyzed by means of ANOVA, Pearson's coefficient and multiple regression. The results were as follows: First, boys' play disruption and play disconnection were higher than girls', and girls' play interaction was higher than boys'. Second, sociability and activity of temperament, and teacher-child interaction were related to peer disruption. Third, teacher-child interaction and sociability of temperament significantly affected play interaction. Controlling parenting behavior of the mother was positively related to peer interaction in girls. Fourth, teacher-child interaction, sociability and emotionality of temperament significantly affected play disconnection. Social parenting behavior of the father was negatively related to play disconnection in boys. Lastly, teacher-child interaction was the clearest indicator for young children' peer interactions. These findings suggested a potential role of the teacher in young children's peer interactions.

Jet Interaction Flow Analysis of Lateral Jet Controlled Interceptor Operating at Medium Altitude (중고도에서 운용되는 측 추력 제어 요격체에 대한 제트 간섭 유동 분석)

  • Choi, Kyungjun;Lee, Seonguk;Oh, Kwangseok;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.986-993
    • /
    • 2018
  • Lateral thrust jet has better maneuverability performance than the control surface like the conventional fin for attitude control or orbital transition of guided weapons. However, in the supersonic region, a jet interaction flow occurs due to the lateral thrust jet during flight, and a complicated flow structure is exhibited by the interaction of the shock wave, boundary layer flow, and the vortex flow. Especially, hit-to-kill interceptors require precise control and maneuvering, so it is necessary to analyze the effect of jet interaction flow. Conventional jet interaction analyses were performed under low altitude conditions, but there are not many cases in the case of medium altitude condition, which has different flow characteristics. In this study, jet interaction flow analysis is performed on the lateral jet controlled interceptor operating at medium altitude. Based on the results, the structural characteristics of the flow field and the changes of aerodynamic coefficient are analyzed.

Flow-Turbine Interaction CFD Analysis for Performance Evaluation of Vertical Axis Tidal Current Turbines (I) (수직축 조류 터빈 발전효율 평가를 위한 유동-터빈 연동 CFD 해석 (I))

  • Yi, Jin-Hak;Oh, Sang-Ho;Park, Jin-Soon;Lee, Kwang-Soo;Lee, Sang-Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.67-72
    • /
    • 2013
  • In this study, numerical analyses that considered the dynamic interaction effects between the flow and a turbine were carried out to investigate the power output performance of an H-type Darrieus turbine rotor, which is one of the representative lifting-type vertical-axis tidal-current turbines. For this purpose, a commercial CFD code, Star-CCM+, was utilized for an example three-bladed turbine with a rotor diameter of 3.5 m, a solidity of 0.13, and the blade shape of an NACA0020 airfoil, and the optimal tip speed ratio (TSR) and corresponding maximum power coefficient were evaluated through exhaustive simulations with different sets of flow speed and external torque conditions. The optimal TSR and maximum power coefficient were found to be approximately 1.84 and 48%, respectively. The torque and angular velocity pulsations were also investigated, and it was found that the pulsation ratios for the torque and angular velocity were gradually increased and decreased with an increase in TSR, respectively.

Eliminations from (E)-2,4-Dinitrobenzaldehyde O-Aryloximes Promoted by R3N/R3NH+ in 70 mol% MeCN(aq). Effects of Leaving Group and Base-Solvent on the Nitrile-Forming Transition-State

  • Cho, Bong Rae;Pyun, Sang Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1030-1034
    • /
    • 2013
  • Elimination reactions of $(E)-2,4-(NO_2)_2C_6H_2CH=NOC_6H_3-2-X-4-NO_2$ (1a-e) promoted by $R_3N/R_3NH^+$ in 70 mol % MeCN(aq) have been studied kinetically. The reactions are second-order and exhibit Br$\ddot{o}$nsted ${\beta}$ = 0.80-0.84 and ${\mid}{\beta}_{lg}{\mid}$ = 0.39-0.42, respectively. For all leaving groups and bases employed in this study, the ${\beta}$ and ${\mid}{\beta}_{lg}{\mid}$ values remained almost the same. The results can be described by a negligible $p_{xy}$ interaction coefficient, $p_{xy}={\partial}{\beta}/pK_{lg}={\partial}{\beta}_{lg}/pK_{BH}{\approx}0$, which describes the interaction between the base catalyst and the leaving group. The negligible pxy interaction coefficient is consistent with the $(E1cb)_{irr}$ mechanism. Change of the base-solvent system from $R_3N$/MeCN to $R_3N/R_3NH^+$-70 mol % MeCN(aq) changed the reaction mechanism from E2 to $(E1cb)_{irr}$. Noteworthy was the relative insensitivity of the transition state structure to the reaction mechanism change.

Analysis of the COVID-19 Pandemic-Driven Effect Changes of Quality Factors on Customer Satisfaction in Korean Police Civil Affairs Service (COVID-19 유행에 따른 한국 경찰 민원 서비스 고객 만족도에 대한 품질 요인의 영향력 변화 분석)

  • Yeo, Seon-Kwan;Lee, Jong-Hyuk;Choi, Won-Jun;Kim, Ki-Hun
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.1
    • /
    • pp.67-78
    • /
    • 2023
  • Purpose: The purpose of this study is to investigate the COVID-19 pandemic-driven effect changes of quality factors on customer satisfaction in Korean Police Civil Affairs Service. Methods: This study fitted a regression model to the data collected by Korean National Police Agency from 2019 (before COVID-19 pandemic) to 2020 (during COVID-19 pandemic). In order to simultaneously estimate the effects of major seven quality factors on customer satisfaction for 'before the pandemic' and for 'during the pandemic', the regression model included not only customer satisfaction as the dependent variable, but also the fourteen independent variables consisting of the seven quality factors and their seven interaction terms. The interaction terms were defined by multiplying each quality factor by a dummy variable indicating either before or during the pandemic. Therefore, the coefficient estimates of the interaction terms indicate the changes of their corresponding quality factor effects on customer satisfaction between before and during the pandemic. The double bootstrap method was applied to test the significance of coefficient estimates. Results: Both before and during the pandemic, all quality factors had positive effects on customer satisfaction. However, these effects changed differently from before to during the pandemic: (increased) supportability, sincerity, and convenience; (decreased) integrity, professionalism, and fairness; (unchanged) promptness. Conclusion: This study found that the pandemic caused significant effect changes of quality factors on customer satisfaction in Korean Police Civil Affairs Service. This finding suggests the necessity of carefully monitoring such effect changes to effectively and efficiently improve customer satisfaction. This study also identified that from before to during the pandemic, supportability, sincerity, and convenience become more important and hence, need to be better managed.

Comparison of Performance and Stability Parameters for Soybean Yield (콩 수량안전성 분석방법간 비교)

  • Suk-Ha, Lee;Yong-Hwan, Ryu;Yeul-Gue, Seung;Seok-Dong, Kim;Eun-Hi, Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.5
    • /
    • pp.604-608
    • /
    • 1997
  • Ten selected soybean genotypes, consisting of nine from a pedigree breeding programme and one recommended variety, were evaluated in nine different locations and over two years for stability of yield performance. Variance component analysis revealed that soybean regional yield trials should be performed at more locations rather than in more years. Five stability parameters, which were coefficient of variability, regression coefficient, deviation parameter, variance component for genotype$\times$environment interaction, and ecovalence, were employed in the evaluation. Significant genotype$\times$environment interaction was present with respect to soybean yield. The highest average yield over nine locations and two years was shown in Suwon 145, which was considered to be stable in all stability statistics. In rank correlation among stability parameters, there were highly significant correlations among stability parameters derived from three Eberhart and Russell's, Plaisted's, and Wricke's methods. Due to the different ranking of genotypes by different stability parameters, a comprehensive method should be employed to identify the promising genotype as well as to characterize the relationship between genotype and environment.

  • PDF