• Title/Summary/Keyword: Intensity modulated radiation therapy

Search Result 259, Processing Time 0.023 seconds

Acute Toxicity in Nasopharyngeal Carcinoma Patients Treated with IMRT/VMAT

  • Ozdemir, Sevim;Akin, Mustafa;Coban, Yasin;Yildirim, Cumhur;Uzel, Omer
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1897-1900
    • /
    • 2015
  • Purpose: To evaluate acute toxicity in nasopharyngeal cancer (NPC) patients treated with intensity modulated radiotherapy (IMRT)/volumetric modulated arc therapy (VMAT) with or without cisplatin-based chemotherapy. Materials and Methods: A total of 45 newly diagnosed, histologically proven non-metastatic NPC patients treated with IMRT between May 2010 and December 2012, were evaluated retrospectively, 37 planned with Eclipse and 8 with Prowess Panther treatment planning system. The doses to the planning target volumes of primary tumor and involved lymph nodes, high risk region, and uninvolved regional nodal areas were 70 Gy, 60 Gy, and 54 Gy respectively and delivered simultaneously over 33 fractions to 39 patients. Another 6 patients irradiated with sequential boost technique. Some 84.4% of patients received chemotherapy. Acute toxicities were graded according to the Radiation Therapy Oncology Group scoring criteria and Common Terminology Criteria for Adverse Events (CTCAE) for chemotherapy side effects. Results: Median age was 43 years (14-79) and all patients were WHO type II. Grade 1 mucositis and dysphagia were observed in 17 (37.8%), and 10 (22.2%) patients, respectively. The incidence of acute grade 2 mucositis and dysphagia was 55.6% and 68.9%, respectively. The most common chemoradiotherapy related acute toxicities were nausea, leucopenia and thrombocytopenia. Grade 3 toxicity was detected in 13 (28.8%) cases. No grade 4 toxicity was occurred. Mean weight loss was 9%. None of the patients required the insertion of percutaneous endoscopic gastrostomy for nutritional support. Radiation therapy was completed without interruption in all patients. Conclusions: IMRT is a safe and effective treatment modality, and well tolerated by patients in the treatment of nasopharyngeal carcinoma. No unexpected side effects were observed.

Influence of jaw tracking in intensity-modulated and volumetric-modulated arc radiotherapy for head and neck cancers: a dosimetric study

  • Mani, Karthick Raj;Upadhayay, Sagar;Das, K.J. Maria
    • Radiation Oncology Journal
    • /
    • v.35 no.1
    • /
    • pp.90-100
    • /
    • 2017
  • Purpose: To Study the dosimetric advantage of the Jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for Head and Neck Cancers. Materials and Methods: We retrospectively selected 10 previously treated head and neck cancer patients stage (T1/T2, N1, M0) in this study. All the patients were planned for IMRT and VMAT with simultaneous integrated boost technique. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) technique by keeping the same constraints and priorities for a particular patient. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without JT for all the patients. Results: The conformity index average of all patients followed by standard deviation (${\bar{x}}{\pm}{\sigma}_{\bar{x}}$) of the JT-IMRT, SJ-IMRT, JT-VMAT, and SJ-VMAT were $1.72{\pm}0.56$, $1.67{\pm}0.57$, $1.83{\pm}0.65$, and $1.85{\pm}0.64$, and homogeneity index were $0.059{\pm}0.05$, $0.064{\pm}0.05$, $0.064{\pm}0.04$, and $0.064{\pm}0.05$. JT-IMRT shows significant mean reduction in right parotid and left parotid shows of 7.64% (p < 0.001) and 7.45% (p < 0.001) compare to SJ-IMRT. JT-IMRT plans also shows considerable dose reduction to thyroid, inferior constrictors, spinal cord and brainstem compared to the SJ-IMRT plans. Conclusion: Significant dose reductions were observed for critical structure in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structure were not significant compared to the SJ-IMRT due to relatively lesser monitor units.

Dosimetric Characteristic of Digital CCD Video Camera for Radiation Therapy

  • Young Woo. Vahc;Kim, Tae Hong.;Won Kyun. Chung;Ohyun Kwon;Park, Kyung Ran.;Lee, Yong Ha.
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.147-155
    • /
    • 2000
  • Patient dose verification is one of the most important parts in quality assurance of the treatment delivery for radiation therapy. The dose distributions may be meaningfully improved by modulating two dimensional intensity profile of the individual high energy radiation beams In this study, a new method is presented for the pre-treatment dosimetric verification of these two dimensional distributions of beam intensity by means of a charge coupled device video camera-based fluoroscopic device (henceforth called as CCD-VCFD) as a radiation detecter with a custom-made software for dose calculation from fluorescence signals. This system of dosimeter (CCD-VCFD) could reproduce three dimensional (3D) relative dose distribution from the digitized fluoroscopic signals for small (1.0$\times$1.0 cm$^2$ square, ø 1.0 cm circular ) and large (30$\times$30cm$^2$) field sizes used in intensity modulated radiation therapy (IMRT). For the small beam sizes of photon and electron, the calculations are performed In absolute beam fluence profiles which are usually used for calculation of the patient dose distribution. The good linearity with respect to the absorbed dose, independence of dose rate, and three dimensional profiles of small beams using the CCD-VCFD were demonstrated by relative measurements in high energy Photon (15 MV) and electron (9 MeV) beams. These measurements of beam profiles with CCD-VCFD show good agreement with those with other dosimeters such as utramicro-cylindrical (UC) ionization chamber and radiographic film. The study of the radiation dosimetric technique using CCD-VCFD may provide a fast and accurate pre-treatment verification tool for the small beam used in stereotactic radiosurgery (SRS) and can be used for verification of dose distribution from dynamic multi-leaf collimation system (DMLC).

  • PDF

Property of Dose Distribution in Accordance with Dose Rate Variation in Intensity Modulated Radiation Therapy (세기조절방사선치료에서 선량율 변화에 따른 선량분포 특성)

  • Kang, Min-Kyu;Kim, Sung-Joon;Shin, Hyun-Soo;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.218-222
    • /
    • 2010
  • As radiation is irradiated from various directions in intensity modulated radiation therapy (IMRT), longer treatment time than conventional treatment method is taken. In case of the patients who have problem to keep same posture for long time because of pain and injury, reducing treatment time through increased dose rate is a way for effective treatment. This study measured and found out the variation of dose and dose distribution in accordance with dose rate variation. IMRT treatment plan was set up to investigate from 5 directions - $0^{\circ}$, $72^{\circ}$, $144^{\circ}$, $216^{\circ}$, $288^{\circ}$ - using ECLIPSE system (Varian, SomaVision 6.5, USA). To confirm dose and dose rate in accordance with dose rate variation, dose rate was set up as 100, 300, 500 MU/min, and dose and dose distribution were measured using ionization chamber (PTW, TN31014) and film dosimeter (EDR2, Kodak). At this time, film dosimeter was inserted into acrylic phantom, then installed to run parallel with beam's irradiating direction, 21EX-S (Varian, USA) was utilized as linear accelerator for irradiation. The measured film dosimeter was analyzed using VXR-16 (Vidar System Corporation) to confirm dose distribution.

Whole pelvic intensity-modulated radiotherapy for high-risk prostate cancer: a preliminary report

  • Joo, Ji Hyeon;Kim, Yeon Joo;Kim, Young Seok;Choi, Eun Kyung;Kim, Jong Hoon;Lee, Sang-Wook;Song, Si Yeol;Yoon, Sang Min;Kim, Su Ssan;Park, Jin-Hong;Jeong, Yuri;Ahn, Hanjong;Kim, Choung-Soo;Lee, Jae-Lyun;Ahn, Seung Do
    • Radiation Oncology Journal
    • /
    • v.31 no.4
    • /
    • pp.199-205
    • /
    • 2013
  • Purpose: To assess the clinical efficacy and toxicity of whole pelvic intensity-modulated radiotherapy (WP-IMRT) for high-risk prostate cancer. Materials and Methods: Patients with high-risk prostate cancer treated between 2008 and 2013 were reviewed. The study included patients who had undergone WP-IMRT with image guidance using electronic portal imaging devices and/or cone-beam computed tomography. The endorectal balloon was used in 93% of patients. Patients received either 46 Gy to the whole pelvis plus a boost of up to 76 Gy to the prostate in 2 Gy daily fractions, or 44 Gy to the whole pelvis plus a boost of up to 72.6 Gy to the prostate in 2.2 Gy fractions. Results: The study cohort included 70 patients, of whom 55 (78%) had a Gleason score of 8 to 10 and 50 (71%) had a prostate-specific antigen level > 20 ng/mL. The androgen deprivation therapy was combined in 62 patients. The biochemical failure-free survival rate was 86.7% at 2 years. Acute any grade gastrointestinal (GI) and genitourinary (GU) toxicity rates were 47% and 73%, respectively. The actuarial rate of late grade 2 or worse toxicity at 2 years was 12.9% for GI, and 5.7% for GU with no late grade 4 toxicity. Conclusion: WP-IMRT was well tolerated with no severe acute or late toxicities, resulting in at least similar biochemical control to that of the historic control group with a small field. The long-term efficacy and toxicity will be assessed in the future, and a prospective randomized trial is needed to verify these findings.

Analysis of changes in dose distribution due to respiration during IMRT

  • Shin, Jung-Suk;Shin, Eun-Hyuk;Han, Young-Yih;Ju, Sang-Gyu;Kim, Jin-Sung;Ahn, Sung-Hwan;Kim, Tae-Gyu;Jeong, Bae-Kwon;Park, Hee-Chul;Ahn, Young-Chan;Choi, Doo-Ho
    • Radiation Oncology Journal
    • /
    • v.29 no.3
    • /
    • pp.206-213
    • /
    • 2011
  • Purpose: Intensity modulated radiation therapy (IMRT) is a high precision therapy technique that can achieve a conformal dose distribution on a given target. However, organ motion induced by respiration can result in significant dosimetric error. Therefore, this study explores the dosimetric error that result from various patterns of respiration. Materials and Methods: Experiments were designed to deliver a treatment plan made for a real patient to an in-house developed motion phantom. The motion pattern; the amplitude and period as well as inhale-exhale period, could be controlled by in-house developed software. Dose distribution was measured using EDR2 film and analysis was performed by RIT113 software. Three respiratory patterns were generated for the purpose of this study; first the 'even inhale-exhale pattern', second the slightly long exhale pattern (0.35 seconds longer than inhale period) named 'general signal pattern', and third a 'long exhale pattern' (0.7 seconds longer than inhale period). One dimensional dose profile comparisons and gamma index analysis on 2 dimensions were performed. Results: In one-dimensional dose profile comparisons, 5% in the target and 30% dose difference at the boundary were observed in the long exhale pattern. The center of high dose region in the profile was shifted 1 mm to inhale (caudal) direction for the 'even inhale-exhale pattern', 2 mm and 5 mm shifts to exhale (cranial) direction were observed for 'slightly long exhale pattern' and 'long exhale pattern', respectively. The areas of gamma index >1 were 11.88 %, 15.11%, and 24.33% for 'even inhale-exhale pattern', 'general pattern', and 'long exhale pattern', respectively. The long exhale pattern showed largest errors. Conclusion: To reduce the dosimetric error due to respiratory motions, controlling patient's breathing to be closer to even inhaleexhale period is helpful with minimizing the motion amplitude.

Quality Assurance for Intensity Modulated Radiation Therapy (세기조절방사선치료(Intensity Modulated Radiation Therapy; IMRT)의 정도보증(Quality Assurance))

  • Cho Byung Chul;Park Suk Won;Oh Do Hoon;Bae Hoonsik
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.275-286
    • /
    • 2001
  • Purpose : To setup procedures of quality assurance (OA) for implementing intensity modulated radiation therapy (IMRT) clinically, report OA procedures peformed for one patient with prostate cancer. Materials and methods : $P^3IMRT$ (ADAC) and linear accelerator (Siemens) with multileaf collimator are used to implement IMRT. At first, the positional accuracy, reproducibility of MLC, and leaf transmission factor were evaluated. RTP commissioning was peformed again to consider small field effect. After RTP recommissioning, a test plan of a C-shaped PTV was made using 9 intensity modulated beams, and the calculated isocenter dose was compared with the measured one in solid water phantom. As a patient-specific IMRT QA, one patient with prostate cancer was planned using 6 beams of total 74 segmented fields. The same beams were used to recalculate dose in a solid water phantom. Dose of these beams were measured with a 0.015 cc micro-ionization chamber, a diode detector, films, and an array detector and compared with calculated one. Results : The positioning accuracy of MLC was about 1 mm, and the reproducibility was around 0.5 mm. For leaf transmission factor for 10 MV photon beams, interleaf leakage was measured $1.9\%$ and midleaf leakage $0.9\%$ relative to $10\times\;cm^2$ open filed. Penumbra measured with film, diode detector, microionization chamber, and conventional 0.125 cc chamber showed that $80\~20\%$ penumbra width measured with a 0.125 cc chamber was 2 mm larger than that of film, which means a 0.125 cc ionization chamber was unacceptable for measuring small field such like 0.5 cm beamlet. After RTP recommissioning, the discrepancy between the measured and calculated dose profile for a small field of $1\times1\;cm^2$ size was less than $2\%$. The isocenter dose of the test plan of C-shaped PTV was measured two times with micro-ionization chamber in solid phantom showed that the errors upto $12\%$ for individual beam, but total dose delivered were agreed with the calculated within $2\%$. The transverse dose distribution measured with EC-L film was agreed with the calculated one in general. The isocenter dose for the patient measured in solid phantom was agreed within $1.5\%$. On-axis dose profiles of each individual beam at the position of the central leaf measured with film and array detector were found that at out-of-the-field region, the calculated dose underestimates about $2\%$, at inside-the-field the measured one was agreed within $3\%$, except some position. Conclusion : It is necessary more tight quality control of MLC for IMRT relative to conventional large field treatment and to develop QA procedures to check intensity pattern more efficiently. At the conclusion, we did setup an appropriate QA procedures for IMRT by a series of verifications including the measurement of absolute dose at the isocenter with a micro-ionization chamber, film dosimetry for verifying intensity pattern, and another measurement with an array detector for comparing off-axis dose profile.

  • PDF

Quality Assurance of Volumetric Modulated Arc Therapy for Elekta Synergy (Elekta Synergy 선형가속기를 이용한 입체적세기조절회전방사선치료(VMAT) 정도관리)

  • Shim, Su-Jung;Shim, Jang-Bo;Lee, Sang-Hoon;Min, Chul-Kee;Cho, Kwang-Hwan;Shin, Dong-Oh;Choi, Jin-Ho;Park, Sung-Ill;Cho, Sam-Ju
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.33-41
    • /
    • 2012
  • For applying the quality assurance (QA) of volumetric modulated arc therapy (VMAT) introduced in Eulji Hospital, we classify it into three different QA steps, treatment planning QA, pretreatment delivering QA, and treatment verifying QA. These steps are based on the existing intensity modulated radiation therapy (IMRT) QA that is currently used in our hospital. In each QA step, the evaluated items that are from QA program are configured and documented. In this study, QA program is not only applied to actual patient treatment, but also evaluated to establish a reference of clinical acceptance in pretreatment delivering QA. As a result, the confidence limits (CLs) in the measurements for the high-dose and low-dose regions are similar to the conventional IMRT level, and the clinical acceptance references in our hospital are determined to be 3 to 5% for the high-dose and the low-dose regions, respectively. Due to the characteristics of VMAT, evaluation of the intensity map was carried out using an ArcCheck device that was able to measure the intensity map in all directions, $360^{\circ}$. With a couple of dosimetric devices, the gamma index was evaluated and analyzed. The results were similar to the result of individual intensity maps in IMRT. Mapcheck, which is a 2-dimensional (2D) array device, was used to display the isodose distributions and gave very excellent local CL results. Thus, in our hospital, the acceptance references used in practical clinical application for the intensity maps of $360^{\circ}$ directions and the coronal isodose distributions were determined to be 93% and 95%, respectively. To reduce arbitrary uncertainties and system errors, we had to evaluate the local CLs by using a phantom and to cooperate with multiple organizations to participate in this evaluation. In addition, we had to evaluate the local CLs by dividing them into different sections about the patient treatment points in practical clinics.

Influence of Parotid from Various Dose Rate in Intensity Modulated Radiation Therapy Planning for Head and Neck Cancer (두경부암 세기변조방사선치료 계획 시 선량율 변화가 이하선에 미치는 영향)

  • Hong, Joo-Wan;Jeong, Yun-Ju;Won, Hui-Su;Chang, Nam-Jun;Choi, Ji-Hun;Seok, Jin-Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • Purpose: There are various beam parameter in intensity modulated radiation therapy (IMRT). The aim of this study is to investigate how various dose rate affect the parotid in treatment plan of IMRT. Materials and Methods: The study was performed on 10 nasopharyngeal carcinoma patients who have undergone IMRT. CT images were scanned 3 mm of thickness in the same condition and the treatment plan was performed by Eclipse (Ver.7.1, Varian, Palo Alto, USA). The parameters for planning used 6 MV energy and 8 beams under the same dose volume constraint. The variation of dose rates were used 300, 400, 500 MU/min. The mean dose of both parotid was accessed from the calculated planning among the 10 patients. The mean dose of parotid was verificated by 2D diode array (Mapcheck from Sun Nuclear Corporation, Melbourne, Florida). Also, Total monitor unit (MU) and beam-on time was analysed. Results: According to the dose rate, the mean dose of parotid was increased by 0.8%, 2.0% each, when dose rate was changed from 300 MU/min to 400, 500 MU/min, moreover Total MU was increased by 5.4% and 10.6% each. There was also a dose upward trend in the dose measurement of parotid by 2D diode array. However, beam - on time difference of 1~2 minutes was no signigicant in the dose rate increases. Conclusion: From this study, when the dose rates increase, there was a signigicant increase of Total MU and the parotid dose accordingly, however the shortened treatment time was not significant. Hence, it is considered that there is a significant decrease of late side effect in parotid radiation therapy, if the precise dose rate in IMRT is used.

  • PDF