In this paper, an iterative MAP approach using a Bayesian model based on the lognormal distribution for image intensity and a GRF for image texture is proposed for despeckling the SAR images that are corrupted by multiplicative speckle noise. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. MRFs have been used to model spatially correlated and signal-dependent phenomena for SAR speckled images. The MRF is incorporated into digital image analysis by viewing pixel types as slates of molecules in a lattice-like physical system defined on a GRF Because of the MRF-SRF equivalence, the assignment of an energy function to the physical system determines its Gibbs measure, which is used to model molecular interactions. The proposed Point-Jacobian Iterative MAP estimation method was first evaluated using simulation data generated by the Monte Carlo method. The methodology was then applied to data acquired by the ESA's ERS satellite on Nonsan area of Korean Peninsula. In the extensive experiments of this study, The proposed method demonstrated the capability to relax speckle noise and estimate noise-free intensity.
In this paper, we propose a method of generating a 2D gray image from LiDAR 3D reflection intensity. The proposed method uses the Fully Convolutional Network (FCN) to generate the gray image from 2D reflection intensity which is projected from LiDAR 3D intensity. Both encoder and decoder of FCN are configured with several convolution blocks in the symmetric fashion. Each convolution block consists of a convolution layer with $3{\times}3$ filter, batch normalization layer and activation function. The performance of the proposed method architecture is empirically evaluated by varying depths of convolution blocks. The well-known KITTI data set for various scenarios is used for training and performance evaluation. The simulation results show that the proposed method produces the improvements of 8.56 dB in peak signal-to-noise ratio and 0.33 in structural similarity index measure compared with conventional interpolation methods such as inverse distance weighted and nearest neighbor. The proposed method can be possibly used as an assistance tool in the night-time driving system for autonomous vehicles.
In this paper, a wide dynamic range complementary metal-oxide-semiconductor (CMOS) image sensor with the adjustable sensitivity by using cascode metal-oxide-semiconductor field-effect transistor (MOSFET) and inverter is proposed. The characteristics of the CMOS image sensor were analyzed through experimental results. The proposed active pixel sensor consists of eight transistors operated under various light intensity conditions. The cascode MOSFET is operated as the constant current source. The current generated from the cascode MOSFET varies with the light intensity. The proposed CMOS image sensor has wide dynamic range under the high illumination owing to logarithmic response to the light intensity. In the proposed active pixel sensor, a CMOS inverter is added. The role of the CMOS inverter is to determine either the conventional mode or the wide dynamic range mode. The cascode MOSFET let the current flow the current if the CMOS inverter is turned on. The number of pixels is $140(H){\times}180(V)$ and the CMOS image sensor architecture is composed of a pixel array, multiplexer (MUX), shift registers, and biasing circuits. The sensor was fabricated using $0.35{\mu}m$ 2-poly 4-metal CMOS standard process.
본 논문에서는 거리영상과 발기영상의 fusion을 이용한 영상분할을 제안한다. Bayes 이론을 기반으로 하여 Markov random field (MRF)로 선험적인 정보를 모델링한다. 거리영상과 밝기영상에서 추출한 특징을 이용하여 maximum a posteriori (MAP) 추정기를 구성한다. 거리영상에서 물체는 국부적인 평면으로 근사되어 각 점마다 평면 계수를 추정해 계수 공간을 구성한다. 밝기영상에서는 ${\alpha}$ 트림드 (${\alpha}$-trimmed) 분산이 밝기특성을 구성한다. 각 공간상의 특징을 에지에 대한 likelihood를 설정하여 구성된 MAP 추정기를 최적화함으로써 영상을 분할한다. 모의실험을 통해 제안된 구조가 그림자, 잡음 그리고 광원의 blurring에 관계없이 영상을 잘 분할한 것을 보였다.
본 연구는 컬러영상에서 특정소리를 연상시킬 수 있는 공감각 인지현상에 기반하여 컬러이미지에서 음악요소로 변환하는 시스템의 구현을 최종 목표로 한다. 이는 빛과 소리의 물리적 주파수정보사이의 유사도를 기반으로 이루어진다. 입력 컬러영상은 우선 컬러모델변환이론에 기초하여 색상(Hue), 채도(Saturation) 및 명도(Intensity)영역으로 변환된다. 음계, 옥타브, 크기 및 시간길이 등의 음악적 성분들이 HSI 컬러모델의 각 영역으로부터 추출된다. 기본주파수(F0, Fundamental Frequency)는 색상 및 명도 히스토그램에서 추출되고, 크기 및 시간길이성분은 명도와 채도 히스토그램에서 추출된다. 실험에서, 제안된 시스템은 표준 C 및 VC++ 기반에서 실현되었고, 최종적으로 WAV 포맷의 사운드파일이 생성되었다. 시뮬레이션 결과를 통해서 입력 컬러영상에서 추출된 음악적 요소들이 출력 사운드신호에 반영됨을 알 수 있었다.
본 논문에서는 이진화기반 영역분할을 이용한 3D입체영상의 밝기 보정방법을 제안한다. 제안된 방법은 입력된 좌우 3D입체영상 중 우 영상을 이진화를 통한 영역분할을 하고 크기가 작은 영역들은 제거한다. 다음 우 영상의 각 영역들에 대해 대응되는 좌 영상내의 영역을 상관계수(correlation coefficient)를 이용한 정합을 통해 추출한다. 영역단위의 매칭을 할 때 영역들 간의 겹침을 방지하기 위하여 모폴로지 필터로 영역경계에 인접한 일정부분을 제거한다. 그리고 좌우 영상의 영역 간 히스토그램 명세화를 수행함으로써 우 영상의 밝기 보정을 한다. 실험에서 좌 영상으로부터 블록단위 움직임보상으로 우 영상을 생성했을 때 제안한 방법이 블록평균 정합오차가 가장 작은 것을 확인 할 수 있었다.
본 연구에서는 항공 관측으로 얻어진 다중분광영상과 LIDAR (LIght Detection And Ranging) 자료를 이용하여 농업지역의 토지피복 분류 정도를 분석하였다. 다중분광영상은 녹색, 적색, 근적외역의 3분광으로 이루어져 있다. LIDAR 벡터 자료로부터 최초 반사강도 영상과 최초 반사 표고 자료와 최후 반사의 지상 표고 자료의 차이로 산출된 식생 높이 영상이 얻어졌다. 토지피복 분류 방법은 최대우도법을 사용했으며, 다중분광영상의 3밴드 영상 LIDAR의 반사강도 영상, 식생 높이 영상을 이용하였다. 모든 영상을 이용한 토지피복 분류의 전체 정도는 85.6%로 다중분광영상만을 이용한 정도보다 10%이상 향상되었다. 여러 농작물간의 높이의 차이, 수목과 농작물 높이의 차이와 LIDAR 반사강도 차이로 인하여 다중분광영상과 LIDAR 영상을 사용한 토지피복 분류의 정도가 향상되었다.
The problem addressed in this paper is the accurate tracting of a dynamic target using outputs from a forward - looking infrared(FLIR) sensor as measurements. The important variations are 1) the spread of the target intensity pattern in the FLIR image plane, 2) target motion characteristics, and 3) the rms value and both spartial and temporal correlation of the back - ground noise. Based on this insights. design modifications and on - line adaptation copabilities are incorporated to enable this type of filter track highly maneuverable targets such as air-to-air missiles, with spatially distributed and changing image intensity profiles, against, background clutter.
In this study, we showed a comparison and analysis making use of DWI(diffusion weighted image) using early diagnosis of cerebral Infarction and with the classified T2 weighted image, FLAIR images signal intensity for brain infarction period. period of cerebral infarction after the condition of a disease by ischemic stroke. To compare 3 types of image, we performed polynomial warping and affined transform for image matching. Using proposed algorithm, calculated signal intensity difference between T2WI, DWI, FLAIR and DWI. The quantification values between hand made and calculated data are almost the same. We quantified the each period and performed pseudo color mapping by comparing signal intensity each other according to previously obtained hand made data, and compared the result of this paper according to obtained quantified data to that of doctors decision. The examined mean and standard deviation for each brain infarction stage are as follows ; the means and standard deviations of signal intensity difference between DWI and T2WI for each period are $197.7{\pm}6.9$ in hyperacute, $110.2{\pm}5.4$ in acute, and $67.8{\pm}7.2$ in subacute. And the means and standard deviations of signal intensity difference between DWI and FLAIR for each period are $199.8{\pm}7.5$ in hyperacute, $115.3{\pm}8.0$ in acute, and $70.9{\pm}5.8$ in subacute. We can quantificate and decide cerebral infarction period objectively. According to this study, DWI is very exact for early diagnosis. We classified the period of infarction occurrence to analyze the region of disease and normal region in DW, T2WI, FLAIR images.
본 논문에서는 영상의 비선형 평활화와 다차원의 명암변화에 기반을 둔 조합형 인식기법을 제안하였다. 여기서 비선형 평활화는 적응적 변형의 히스토그램 재조정 전처리 기법으로 영상의 밝기를 조정하여 화질을 개선하기 위함이다. 다차원의 명암변화는 인접 픽셀간의 밝기변화를 4단계로 나누어 고려함으로써 영상의 속성을 더욱 더 정확하게 반영하기 위함이고, x축과 y축의 2방향 각각의 명암변화를 고려한 정규상호상관계수는 좀 더 포괄적으로 영상의 유사성을 측정하기 위함이다. 제안된 기법을 50개 40*40 픽셀의 명암도 변화를 가지는 얼굴영상들을 대상으로 실험한 결과, 평활화를 수행하지 않거나 선형 평활화를 수행한 기법에 비해 각각 영상의 속성을 잘 반영한 우수한 인식성능이 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.