• Title/Summary/Keyword: Intelligent vehicles

Search Result 770, Processing Time 0.029 seconds

Aggressive Driving Behavior in the Protected/Permissive Left Turn(PPLT) Intersections (보호/비보호좌회전(PPLT) 교차로에서의 공격적 운전행태 연구)

  • Oh, Do Hyung;Jang, Tae Youn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.28-38
    • /
    • 2017
  • The study is to analyze the aggressive driving behavior in the protected/permissive left turn(PPLT) intersections in Gunsan City. As a result of the logistic regression model, increasing of driver's age and driving experience, non-peak time, no company, sedan and male have a tendency to behave aggressive driving to the opposite vehicles. When the vehicles try to turn the unprotected left in the PPLT intersection, the opposite vehicle drivers recognize them at the aggressive driving behavior if the distance to opposite vehicles is not enough. The relationship between driver characteristics and the distance to the opposite vehicles is analyzed under aggressive driving behavior. increasing of age and company, peak time tend to influence the short distance opposite vehicles while male and higher driving experience the middle and long distance. Sedan has the aggressive possibility to shorter distance opposite vehicles rather than others.

Impacts of Automated Vehicles on Traffic Flow Changes (자율주행자동차 도입으로 인한 교통흐름 변화 분석)

  • Jung, Seung weon;Moon, Young jun;Lee, Sung Yeol;Hwang, Kee Yeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.244-257
    • /
    • 2017
  • Traffic congestion occurs from drivers' human factors such as driver reaction time, reckless lane change, and inexperienced driving. When Automated Vehicles are introduced, human factors are excluded, resulting in increased average vehicle speed, stabilizing traffic flow, and increasing road capacity. This study analyzed traffic flow changes through traffic volume-speed-density plots, and increased road capacity due to Automated Vehicles. As a result of the analysis, when rate of automated vehicles gests higher, the traffic flow became stable. Additionally, it was analyzed that when all vehicles were automated, the road capacity increased by about 120 %. It is expected that there will be a positive expectation in terms of traffic congestion and traffic demand management due to the introduction of Automated Vehicles.

Study of Analysis for Autonomous Vehicle Collision Using Text Embedding (텍스트 임베딩을 이용한 자율주행자동차 교통사고 분석에 관한 연구)

  • Park, Sangmin;Lee, Hwanpil;So, Jaehyun(Jason);Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.160-173
    • /
    • 2021
  • Recently, research on the development of autonomous vehicles has increased worldwide. Moreover, a means to identify and analyze the characteristics of traffic accidents of autonomous vehicles is needed. Accordingly, traffic accident data of autonomous vehicles are being collected in California, USA. This research examined the characteristics of traffic accidents of autonomous vehicles. Primarily, traffic accident data for autonomous vehicles were analyzed, and the text data used text-embedding techniques to derive major keywords and four topics. The methodology of this study is expected to be used in the analysis of traffic accidents in autonomous vehicles.

Development of autonomous system using magnetic position meter (자기거리계를 이용한 자율주행시스템의 개발)

  • Kim, Geun-Mo;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.343-348
    • /
    • 2007
  • Development of autonomous vehicle system that use magnetic position meter research of intelligence transportation system is progressed worldwide active by fast increase of vehicles. Among them, research about autonomous of vehicles occupies field. And autonomous of vehicles is element that path recognition is basic. Existent magnetic base autonomous system analyzes three-dimensional data of magnet marker to 3 axises magnetic sensor and recognized route. But because using Magnetic Wire and Magnetic Position Meter in treatise that see, measure side lateral error and propose system that driving. And system that compare with system of autonomous vehicles and propose wishes to verify by hardware of that specification and simple algorithm through an experiment that autonomous is available.

Design of T-S Fuzzy-Model-Based Controller for Control of Autonomous Underwater Vehicles (무인 잠수정의 심도 제어를 위한 T-S 퍼지 모델 기반 제어기 설계)

  • Jun, Sung-Woo;Kim, Do-Wan;Lee, Ho-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.302-306
    • /
    • 2011
  • This paper presents Takagi-Sugeno (T-S) fuzzy-model-based controller for depth control of autonomous underwater vehicles(AUVs). Through sector nonlinearity methodology, The nonlinear AUV is represented by T-S fuzzy model. By using the Lyapunov function, the design condition of controller is derived to guarantee the performance of depth control in the format of linear matrix inequality (LMI). An example is provided to illustrate the effectiveness of the proposed methodology.

Impact Analysis of Connected-Automated Driving Services on Urban Roads Using Micro-simulation (미시교통시뮬레이션 기반 도심도로 자율협력주행 서비스 효과 분석)

  • Lee, Ji-yeon;Son, Seung-neo;Park, Ji-hyeok;So, Jaehyun(Jason)
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.91-104
    • /
    • 2022
  • The operational design domain (ODD) of autonomous vehicles needs to be expanded on highways and urban roads in light of the substantial commercialization of Level 3 autonomous vehicles. Therefore, this study developed a specific infrastructure autonomous vehicle-based cooperative driving service to ensure the driving safety of autonomous vehicles on city roads. The traffic operation efficiency, safety evaluation, and core evaluation indices for each service were selected and analyzed to study the effect of each service. The result of the analysis confirmed that the traffic operation efficiency and safety of autonomous vehicles were improved through the V2X communication-based autonomous cooperative driving service. On the whole, the significance of this study is in deriving the effect of the autonomous cooperative driving service based on V2X communication on urban roads with interrupting traffic flow.

A Safety Analysis Based on Evaluation Indicators of Mixed Traffic Flow (혼합 교통류의 적정 평가지표 기반 안전성 분석)

  • Hanbin Lee;Shin Hyoung Park;Minji Kang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.42-60
    • /
    • 2024
  • This study analyzed the characteristics of mixed traffic flows with autonomous vehicles on highway weaving sections and assessed the safety of vehicle-following pairs based on surrogate safety indicators. The intelligent driver model (IDM) was utilized to emulate the driving behavior of autonomous vehicles, and the weaving sections were divided into lengths of 300 and 600 meters for analysis within a micro-traffic simulation (VISSIM). Although significant differences were found in the average speed, density, and headway between the two sections through t-test results, no significant differences were observed when comparing the number of conflicts per indicator and the vehicle-following pair. Four safety indicators were selected for the mixed traffic evaluation based on their ability to represent risk levels similar to those perceived by drivers. The safety analysis, based on the selected four indicators, determined that autonomous vehicles following other autonomous vehicles were the safest pairing. Future research should focus on integrating these indicators into a single comprehensive index for analysis.

Vehicle Shadow Removal For Intelligent Traffic System

  • Jang, Dae-Geun;Kim, Eui-Jeong
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.3
    • /
    • pp.123-129
    • /
    • 2006
  • The limited number of roads and the increasing number of vehicles demand the automatic regulation of overspeed vehicles, illegal vehicles, and overloaded vehicles and the automatic charge calculation depending on the type of the vehicle. To meet such requirements, it is important to remove the shadow of the vehicle as processing and recognizing an image captured by a camera. The shadow of the vehicle is likely to cause misclassification of the vehicle type due to diverse errors and mistakes occurring when detecting geometrical properties of the vehicle. In case that shadows of two different vehicles are overlapped, not only the type of the vehicles may be misclassified but also it is difficult to accurately identify the type of the vehicles. In this paper, we propose a robust algorithm to remove the shadow of a vehicle by calculating the luminance, the chrominance, the gradient density of the cast shadow from information acquired using the image subtraction of the background, and to recognize the substantial vehicle figure. Even when it is hard to detect and split a target vehicle from its shadow as shadows of vehicles are attached to each other, our robust algorithm can detect the vehicle figure only. We implemented our system with a general camera and conducted experiments on various vehicles on general roads to find out our vehicle shade removal algorithm is efficient when detecting and recognizing vehicles.