• Title/Summary/Keyword: Intelligent tuning

Search Result 203, Processing Time 0.025 seconds

Development of auto-tuning algorithm for considering aging effect of wind turbine generator (풍력발전기의 경년화를 고려한 자동튜닝 알고리즘 개발)

  • Kim, Se-Yoon;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.246-252
    • /
    • 2012
  • Recently, concern over climate change and global politics associated with traditional fossil fuel energy sources has driven significant increase in wind energy utilization over the past decade around world. Generally, life-time of wind turbine system should be guaranteed for twenty years. Therefore, performance deterioration of wind turbine system occurs owing to aging effects for long term operation. In this work, a new type of auto tuning algorithm for overcoming the problem of performance deterioration is proposed. Furthermore, various simulations are carried out to verify the feasibility of the proposed scheme.

A Study on the Load Frequency control of Power System Using Neural Network Self Tuning PID Controller (신경회로망 자기종조 PID 제어기를 이용한 전력계통의 부하주파수제어에 관한 연구)

  • 정형환;김상효;주석민;김경훈
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.29-38
    • /
    • 1998
  • This paper proposes the neural network self-tuning PID controller for the load frequency control of 2- areas power system, namely, the prompt convergence of frequency and tie-line power flow deviation. The neural network applied to computer simulation consists of neurons of two inputs, ten hiddens and tliree outputs layer. Neurons of two inputs layer receive the error and its change rate of the system and cutputs layer consists of three neurons for the parameters of the PID controller. The simulation results shows that the proposed neural network self-tuning PID controller is superior to conventional control t~:chniques(Optimal, PID) in dynamic response and control performance.

  • PDF

A Construction of Fuzzy Model for Data Mining

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.209-215
    • /
    • 2003
  • A new GA-based methodology using information granules is suggested for the construction of fuzzy classifiers. The proposed scheme consists of three steps: selection of information granules, construction of the associated fuzzy sets, and tuning of the fuzzy rules. First, the genetic algorithm (GA) is applied to the development of the adequate information granules. The fuzzy sets are then constructed from the analysis of the developed information granules. An interpretable fuzzy classifier is designed by using the constructed fuzzy sets. Finally, the GA are utilized for tuning of the fuzzy rules, which can enhance the classification performance on the misclassified data (e.g., data with the strange pattern or on the boundaries of the classes). To show the effectiveness of the proposed method, an example, the classification of the Iris data, is provided.

Design of Fuzzy Model for Data Mining

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.107-113
    • /
    • 2003
  • A new GA-based methodology using information granules is suggested for the construction of fuzzy classifiers. The proposed scheme consists of three steps: selection of information granules, construction of the associated fuzzy sets, and tuning of the fuzzy rules. First, the genetic algorithm (GA) is applied to the development of the adequate information granules. The fuzzy sets are then constructed from the analysis of the developed information granules. An interpretable fuzzy classifier is designed by using the constructed fuzzy sets. Finally, the GA are utilized for tuning of the fuzzy rules, which can enhance the classification performance on the misclassified data (e.g., data with the strange pattern or on the boundaries of the classes). To show the effectiveness of the proposed method, an example, the classification of the Iris data, is provided.

A study on the computer aided testing and adjustment system utilizing artificial neural network

  • Koo, Young-Mo;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.65-69
    • /
    • 1992
  • In this paper, an implementation of neuro-controller with an application of artificial neural network for an adjustment and tuning process for the completed electronics devices is presented. Multi-layer neural network model is employed with the learning method of error back-propagation. For the intelligent control of adjustment and tuning process, the neural network emulator (NNE) and the neural network controller(NNC) are developed. Computer simulation reveals that the intelligent controllers designed can function very effectively as tools for computer aided adjustment system. The applications of the controllers to the real systems are also demonstrated.

  • PDF

Recognition of 3D hand gestures using partially tuned composite hidden Markov models

  • Kim, In Cheol
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.236-240
    • /
    • 2004
  • Stroke-based composite HMMs with articulation states are proposed to deal with 3D spatio-temporal trajectory gestures. The direct use of 3D data provides more naturalness in generating gestures, thereby avoiding some of the constraints usually imposed to prevent performance degradation when trajectory data are projected into a specific 2D plane. Also, the decomposition of gestures into more primitive strokes is quite attractive, since reversely concatenating stroke-based HMMs makes it possible to construct a new set of gesture HMMs without retraining their parameters. Any deterioration in performance arising from decomposition can be remedied by a partial tuning process for such composite HMMs.

The Design of Fuzzy-Sliding Mode Control with the Self Tuning Fuzzy Inference Based on Genetic Algorithm and Its Application

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.182-182
    • /
    • 2000
  • This paper proposes a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a robot. Using this method, the number of inference rules and the shape of membership functions are optimized without an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. And, it is guaranteed that the selected solution become the global optimal solution by optimizing the Akaike's information criterion. The trajectory trucking experiment of the polishing robot system shows that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the proposed fuzzy-sliding model controller provides reliable tracking performance during the polishing process.

  • PDF

A Study on the Auto-Tuning of a PID Controller using Artificial Neural Network (인공신경망에 의한 PID 제어기 자동동조에 관한 연구)

  • 정종대
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.36-42
    • /
    • 1996
  • In this paper, we proposed a PID controller, which could control unknown plants using Artificial Neural Network(ANN) for auto-tuning of the PID parameters. In the proposed algorithm, the parameters of the controller were adjusted to reduce the error of the controlled plant. In this process, the sensitivity between input and output of the unknown plant was needed. So, in order to obtain this sensitivity, the ANN's learnig ability was used. Computer simualtions were performed for the regulation problems, and the results were compared with those of Ziegler-Nichols PID controller. As a result, it was shown that the proposed algorithm outperformed Ziegler-Nichols controller in rise time, overshoot, undershoot, and setting time.

  • PDF

Gain Tuning of a Fuzzy Logic Controller Superior to PD Controllers in Motor Position Control

  • Kim, Young-Real
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.188-199
    • /
    • 2014
  • Although the fuzzy logic controller is superior to the proportional integral derivative (PID) controller in motor control, the gain tuning of the fuzzy logic controller is more complicated than that of the PID controller. Using mathematical analysis of the proportional derivative (PD) and fuzzy logic controller, this study proposed a design method of a fuzzy logic controller that has the same characteristics as the PD controller in the beginning. Then a design method of a fuzzy logic controller was proposed that has superior performance to the PD controller. This fuzzy logic controller was designed by changing the envelope of the input of the of the fuzzy logic controller to nonlinear, because the fuzzy logic controller has more degree of freedom to select the control gain than the PD controller. By designing the fuzzy logic controller using the proposed method, it simplified the design of fuzzy logic controller, and it simplified the comparison of these two controllers.

AUTOMATIC TUNING OF FUZZY OPTIMAL CONTROL SYSTEM

  • Hoon-Kang;Lee, Hong-Gi-;Kim, Yong-Ho-;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1195-1198
    • /
    • 1993
  • We investigate a systematic design procedure of automated rule generation of fuzzy logic based controller for uncertain dynamic systems such as an engine dynamic model.“Automated Tuning”means autonomous clustering or collection of such meaningful transitional relations in the state-space. Optimal control strategies are included in the design procedures, such as minimum squared error, minimum time, minimum energy or combined performance criteria. Fuzzy feedback control systems designed by the cell-state transition method have the properties of closed-loop stability, robustness under parameter variabtions, and a certain degree of optimality. Most of all, the main advantage of the proposed approach is that reliability can be potentially increased even if a large grain of uncertainty is involved within the control system under consideration. A numerical example is shown in which we apply our strategic fuzzy controller design to a highly nonlinear model of engine idle speed contr l.

  • PDF